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Abstract: Our goal is to discuss the different issues that arise when attempting to visualize a joints-
and-bars cube through GeoGebra, a widespread program that combines dynamic geometry (DGS)
and computer algebra systems (CAS). As is standard in the DGS framework, the performance of the
graphic model (i.e., the positions of the other vertices when dragging a given one) must correspond
to a mathematically rigorous, symbolic computation-driven output. This requirement poses both
computational algebraic geometry and dynamic geometry programming challenges that will be
described, together with the corresponding proposed solutions. Among these, we include a complete
determination of the dimension of the cubic linkage from an algebraic perspective, and introduce
advanced 3D visualizations of this structure by using the GeoGebra software.

Keywords: dynamic geometry; geogebra; computational algebraic geometry; linkages; cube

MSC: 51-08; 51M15; 14P05; 14Q30; 70-10

1. Introduction

Dynamic geometry software (DGS) programs, such as Cabri, The Geometer’s Sketchpad,
Cinderella or GeoGebra, were initially conceived as a tool for teaching geometry in schools,
as a digital assistant for the constructions traditionally made by ruler and compass on a
notebook or the blackboard.

As is well known, geometric reasoning on ruler and compass constructions requires
developing logical arguments beyond their mere visual appearance: it is not admissible
to conclude, for example, that some lines on a figure are parallel just because of their
appearance. A geometric construction is not just a drawing, but a set of instructions whose
output delivers a geometric figure with a definite list of geometric properties. This fact
is emphasized when using DGS programs, as dragging figures—one of the five essential
features in the DGS paradigm, together with dynamic transformation, measurement, ani-
mation and locus computation capabilities (see, for instance, [1,2] or [3])—helps to identify
those properties of the constructions that are mathematically intrinsic, and to discard those
that are just visually accidental.

In recent times, the development of DG software has incorporated powerful new
features, such as embedded computer algebra systems (CAS) that help perform symbolic
computations, providing a sound algebraic foundation on which these geometric construc-
tions are built. This represents, at least from a formal point of view, an improvement
over previous DGS that only used numerical methods to produce their outputs. As an
example, the DGS GeoGebra incorporates in its latest versions a CAS based on the Giac
platform [4,5], which can be accessed from the CAS view of the program. Since symbolic
computations can be complex and lengthy in certain situations, GeoGebra uses a mixed
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approach when confronting geometric constructions, taking advantage of both the faster
numerical algorithms on the one hand, and the precision offered by a symbolic approach on
the other hand (often when requested from the user through the use of specific commands).

The set of tools provided by DGS, always increasing in ease of use, variety and pow-
erfulness, allows us to also successfully confront the task of creating models representing
complex geometric objects. The importance of making physical models of geometric objects
has been widely emphasized [6], and the current digital revolution is providing new ways
of virtualizing these physical models in order to facilitate their study and accessibility
(with an extra advantage of reducing costs). As an excellent showcase of virtual geometric
models, the reader is referred to Imaginary [7], an open-source project that defines itself
as a non-profit organisation for the communication of modern mathematics. Returning to DGS
and GeoGebra, with a quick search in its repository of resources, one can find a great
variety of geometric models related to diverse fields, such as architecture, biology, physics,
engineering, etc. The inclusion of a 3D engine to create spatial models after the release of
GeoGebra 5.0 bolstered their production, mostly (but not only) designed with educational
purposes in mind.

In this article, we concern ourselves with the modeling of linkages (as defined, for
example, in [8] or [9]) through the use of DGS, as well as the study of their geometric
and algebraic properties with the assistance of a CAS. Linkages constitute a family of
geometric objects of current interest in diverse fields of research, often connected with the
design of a variety of structures such as robotic mechanisms, manufacturing processes,
architectural frames, molecular arrangements, etc. Here, we will focus our attention on a
specific structure: the cubic linkage. By the cubic linkage, we understand a spatial linkage
formed by the vertices and rigid edges that constitute the frame of the regular cube (see
Figure 5 in Section 2.2.4). To economize the language used throughout the text, we will
often refer to any 3-dimensional realization of this linkage simply as a cube. In order to
settle some conventions, we will always assume that the cube has edges of 1 unit length.
Even though this cubic linkage is quite a natural structure to take into consideration, it
is surprising to observe the scarce information that can be found about it. We will see in
the sequel the difficulties that arise when trying to fully understand its geometry, even
with powerful mathematical software such as Maple. Indeed, two of the authors already
approached the study of this elusive structure in a previous work [10], stating some open
questions which we partially solve here.

In Section 2, we settle the mathematical model for our treatment of linkages immersed
in a Euclidean space, which will have a strong algebraic flavour since we will associate with
a linkage an algebraic (non-necessarily irreducible) variety. We establish basic definitions,
introduce initial examples, and comment on certain advantages and limitations of our
approach. In Section 3, we carefully study the geometric and algebraic properties of the
cubic linkage, determining the dimension of its associated variety. Then, in Section 4, after
discussing some issues concerning the visualization of linkages in DGS, we proceed to
describe some of the visual, dynamic models we have developed in GeoGebra to simulate
the cube in a 3D environment. Finally, we conclude by presenting how our approach
contributes to answering a number of questions posed in [10]. These questions spurred our
interest to delve deeper into this structure, which to us represents a real challenge both to
completely understand its underlying algebraic structure as well as to visually modelize it
through the use of DGS.

2. A Mathematical Model for Linkages
2.1. Selection of the Model

Traditionally, whenever finding an object with mathematical properties in a given
field of knowledge, the need quickly arises to build an appropriate model that grasps its
essential mathematical features and allows a deeper understanding of the laws governing
its behavior. However, this task of modelizing a given piece of reality is rather a subtle
question that can be addressed from many different points of view and with diverse
mathematical tools. On the other hand, during the development of new mathematical
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ideas, scientists also attempt to model these new abstract entities to give them a physical
presence and make them more comprehensible. As an example of the latter approach, we
can mention [6], where the discovery of new surfaces and curves during the 19th century
led to a widespread interest in constructing physical models to visualize and understand
their properties.

With the advent of the digital era, the new trends in modeling often moved from the
physical world to the virtual space, and computers became a new sandbox to recreate either
physical or mathematical objects. We can see this transition from physical models to digital
ones across all technical and scientific disciplines, as well as in the educational context (see
[11] for an account of the transition from analogue to digital devices in the classroom).

In this paper, our object of interest comes originally from a family of mechanisms
which are usually referred to as linkages. A linkage is a mechanical device consisting a a
finite set of rigid bars, some of which are connected at their extremes in a free-to-move joint
(see Figure 1).

Figure 1. A linkage with 5 bars and 5 joints.

Usually, linkages are considered on the plane or in 3-dimensional space. For the
mathematically oriented person, the need quickly arises to give a mathematical definition
for this family of devices, so that its properties can be better understood. That is, we are in
need of a mathematical model to pursue our investigation.

Before providing a definition, we start by setting up some notation and basic concepts.
Given two points, v1 and v2, in Euclidean space, we denote by ‖v1 − v2‖ their Euclidean
distance—that is, the length of the segment joining them. By a graph we understand a
pair G = (V, E) consisting of a finite set of elements V = {v1, . . . , vr} called vertices and
a subset E of the set of 2 combinations of V. Each element of E is called an edge of the
graph G, and the 2-combination {vi, vj} is denoted by eij (through this work, not more
than 8 vertices will be considered altogether, so that the corresponding sub-indices will
always be one-digit numbers and no confusion will arise with this notation). The following
is a common definition for linkages (see for example [9]), although some variations on
terminology can be found in the literature.

Definition 1. Let G = (V, E) denote a graph with r vertices. An abstract linkage L for the graph
G is a pair (G, l), where l : E→ R+ is a map assigning to each edge eij ∈ E a positive real number
l(eij) ≡ lij, which we call its length. A realization in Rn of an abstract linkage L = (G, l) is a pair
(L, ψ), where ψ : V → Rn satisfies ‖ψ(vi)− ψ(vj)‖ = lij for each edge eij ∈ E (in this notation
we will always assume i < j).

Some of the fundamental problems that arise when dealing with these mathematical
objects concern diverse topological and geometrical questions:

1. (Existence) For which abstract linkages does there exist a realization in Rn?
2. (Rigidity) Which abstract linkages admit just one realization in Rn up to congruence?
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3. (Configuration space) How is the space of all possible realizations of an abstract
linkage? What is its dimension, topology. . . ?

There are diverse mathematical tools to approach these problems that come from
diverse fields such as mechanics, differential geometry, combinatorics, topology or algebraic
geometry. In particular, the algebraic geometry approach comes from the fact that the
conditions ‖ψ(vi)− ψ(vj)‖ = lij can be expressed by means of quadratic polynomials, so
that we can express a realization of an abstract linkage by means of a set of polynomials in
the coordinates of ψ(vi), i = 1, . . . , n. In this work, we will adopt this perspective for dealing
with linkages, an approach that involves—because of the great level of development and
higher simplicity of algebraic geometry over algebraically closed fields, as mentioned in
the quotation below—the parallel consideration, in many instances, of linkage realizations
in Cn in order to derive properties for the Rn context. For the cube linkage we initially
have 8 vertices connected by 12 unit-length rods, and so the algebraic model consists of
8 · 3 = 24 variables and 12 quadratic equations defining the distances among them. To see
the kind of difficulties that can (and will) arise when dealing with this model for the cube,
it is worthwhile to quote here [12]:

Since (squared) distance constraints satisfied by the joint coordinates are
given by quadratic polynomials, it is possible to try to analyze the set of all
realizations of a given pair (G, l) symbolically using computational algebra.
However, a Gröbner basis for an ideal generated by quadratic polynomials in
k variables can require generators of degree O(22k

) so computations with the
squared distance constraints may quickly become intractable. Moreover, care
must be taken in applying results from algebraic geometry in this setting as
we are interested in realizations over the real numbers, and many results in
algebraic geometry require an algebraically closed ground field.

To each abstract linkage L we can associate the variety of its realizations in Rn. If L has
r vertices v1, . . . , vr and, having in mind that each vertex vi has n coordinates (xi1, . . . , xin),
this variety lives in (Rn)r ≡ Rnr and is determined by a set of s polynomial equations
pi(x11, . . . , xrn) = 0, pi ∈ R[x11, . . . , xrn], given by the conditions on the lengths of its edges.
With the language of algebraic geometry, if I(L) = 〈p1, . . . , ps〉 ⊂ R[x11, . . . , xrn] denotes
the ideal generated by the polynomials pi, then the variety of realizations is V(I(L)).
As mentioned above, since working with an algebraically closed field facilitates certain
computations and simplifies some arguments that will arise in the sequel, we establish the
following definitions to define the mathematical model for linkages that we will be using
throughout the present work.

Definition 2. Let L be an abstract linkage with r vertices V = {v1, . . . , vr} and s edges E = {eij}
of lengths lij. Let us associate with each vi the n-tuple of variables (xi1, . . . , xin), and with each edge
eij in E the polynomial

pij(xi1, . . . , xin, xj1, . . . , xjn) =
n

∑
k=1

(xjk − xik)
2 − l2

ij.

The free n-linkage Vn(L) is the variety in (Cn)r determined by the ideal in C[x11, . . . , xrn]

In(L) = 〈pij ∈ R[x11, . . . , xrn] : eij ∈ E〉

Now, given a finite collection of polynomials Q = {q1, . . . , qs} ⊂ R[x11, . . . , xrn], the
semi-free n-linkage Vn(L, Q) is the variety determined by the ideal In(L, Q) generated by the
polynomials pij, the same ones that generate the free n-linkage, plus the polynomials in Q. These
extra polynomials are called the restrictions of the semi-free linkage. Whenever the dimension n of
the ambient space Rn is clear from the context we will use simply the word linkage to refer to a semi-
free n-linkage. A C-realization of an either free or semi-free linkage is a point of the corresponding
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(complex) variety. A R-realization (or simply realization) of a linkage is a C-realization with
real coordinates.

From these definitions, it readily follows that in fact, a semi-free n-linkage for the
abstract linkage L is nothing else than a subvariety of the free n-linkage Vn(L).

Remark 1. In order to clarify the relationship between one vertex and the variables representing its
coordinates, when working with 2-linkages (3-linkages), we will often name a vertex with a capital
letter such as A and its corresponding coordinates by Ax, Ay (Az).

Definition 3. Two realizations RL = (t11, . . . , trn) and R′L = (t′11, . . . , t′rn) of an n-linkage
L with r vertices are congruent if and only if there is an isometry φ : Rn → Rn such that
φ(tk1, . . . , tkn) = (t′k1, . . . , t′kn) for k = 1, . . . , r. If φ is a direct (inverse) isometry, we say that RL
and R′L are directly (inversely) congruent.

In other words, two realizations of a linkage are congruent if there is an isometry
taking one bijectively onto the other, preserving the labeling of the vertices. Therefore, even
though two realizations can be isometric under relabelling of their vertices, they will not be
considered congruent here (see Figure 2).

Figure 2. Two non-congruent realizations of a linkage with 5 vertices and 5 unit-length edges.

Example 1. Let us consider the abstract linkage L1 corresponding to a graph with three vertices
{A, B, C} and the three edges joining them, see Figure 3. Assume each edge is given length 1. Let
us describe the free 2-linkage for this abstract linkage. If we set A = (Ax, Ay), B = (Bx, By),
C = (Cx, Cy), then

V2(L1) = {(Ax, Ay, Bx, By, Cx, Cy) ∈ C6 : (Bx − Ax)
2 + (By − Ay)

2 − 1 = 0,

(Cx − Bx)
2 + (Cy − By)

2 − 1 = 0, (Ax − Cx)
2 + (Ay − Cy)

2 − 1 = 0}

Figure 3. A triangular free linkage in the plane.
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The variety V2(L1) is contained in C6 and is determined by the ideal

I2(L1) = 〈(Bx − Ax)
2 + (By − Ay)

2 − 1, (Cx − Bx)
2 + (Cy − By)

2 − 1,

(Ax − Cx)
2 + (Ay − Cy)

2 − 1〉,

which corresponds to the 3 conditions determined by the lengths of its edges. The expected dimension
of this variety should be 6− 3 = 3. We proceed to check this with Maple:

> with ( P o l y n o m i a l I d e a l s ) :
> IL1 := <(Bx−Ax)^2+( By−Ay)^2 −1 , ( Cx−Bx )^2+(Cy−By)^2 −1 ,

( Ax−Cx)^2+(Ay−Cy)^2−1>
> H i l b e r t D i m e n s i o n ( IL1 )

3

This result is valid at least over C6, since over the complexes there is a correspondence between
the dimension of an ideal and the geometric dimension of its zero-set. Yet, it is easy to check that
I(L1) is a real ideal by considering the Jacobian and checking that it has rank 6− 3 = 3. On
the other hand, we will later see how this naïve approach to guess dimensions will often lead to
unexpected results.

Since the group of Euclidean isometries Iso(R2) of the plane is also a 3-dimensional variety
(see Theorem 1 in [13], where the variety of isometries is studied over the reals, concluding that the
standard definition of isometry provides a real ideal, with properties similar to the well-known ones
in the complex setting), in order to reduce the number of variables that come into play and focus our
attention just on internal changes of configuration of our linkage, we can proceed now to fix two of
the vertices of the triangle (let us say A = (Ax, Ay) ≡ (0, 0) and B = (Bx, By) ≡ (1, 0)) and study
all possible configurations for the semi-free linkage V2(L1, Q1), where Q1 = {Ax, Ay, Bx − 1, By}.
The corresponding ideal is I2(L1, Q1) = I2(L1) + 〈Ax, Ay, Bx − 1, By〉 and has four restrictions,
leaving us in fact with only two variables Cx, Cy and two equations (Cx− 1)2 + (Cy− 0)2− 1 = 0,
(0− Cx)2 + (0− Cy)2 − 1 = 0, so that now the expected dimension should be 0:

> with ( P o l y n o m i a l I d e a l s ) :
> ILQ1 := <(Bx−Ax)^2+( By−Ay)^2 −1 , ( Cx−Bx )^2+(Cy−By)^2 −1 ,

( Ax−Cx)^2+(Ay−Cy)^2 −1 , Ax , A_y , B_x −1 , B_y>
> H i l b e r t D i m e n s i o n ( ILQ1 )

0

the fact that a variety has dimension zero translates into the fact that there is only a finite number of
possible realizations (or none at all). To answer which are these possible realizations, we can ask
Maple to find all possible solutions for the corresponding system of equations:

> s o l v e ( G e n e r a t o r s ( ILQ1 ) , { Cx , Cy } )

Cx = 1
2 , Cy =

RootOf(Z2−3)
2

this output corresponds to the two possible equilateral triangles with vertices (0, 0), (1, 0) and(
1
2 ,±

√
3

2

)
. Notice that these two solutions are congruent; we will later see that this situation

corresponds to a globally rigid linkage in R2 (see Section 2.2.1 below).

2.2. Some Issues Concerning the Model

Before providing more examples of linkages and proceeding to a careful study of the
cube, it is interesting to make some observations with respect to our chosen mathematical
model, including how to deal in this framework with key concepts such as that of rigidity
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and with some shortcomings derived from our algebraic approach that have to be taken
into account.

2.2.1. An Algebraic Definition of Rigidity

One of the most studied topics concerning linkages is that of rigidity (see [12,14–17])).
In our present work, we establish the following definitions for global and finite rigidity:

Definition 4. We say that an abstract linkage is globally rigid in Rn when all its possible
realizations in Rn are congruent. On the other hand, we say that an abstract linkage is finitely
rigid in Rn when the set of all its realizations in Rn can be partitioned into a finite set of congruent
classes. With these definitions, it is clear that a globally rigid linkage is also finitely rigid in the same
ambient space.

As already remarked above, it can be concluded from [13] that the group Iso+(Rn)

of direct isometries in Rn is an irreducible variety of dimension dn = n(n+1)
2 . Given an

n-linkage L, we say that one of its realizations RL spans Rn if the minimum affine subspace
H ⊂ Rn containing RL is the whole ambient space Rn. When restricting our attention to
n-linkages with at least one realization in Rn that spans Rn, the following statement holds:

Proposition 1. Let L be an abstract linkage and let Vn(L) be the corresponding free n-linkage.
Then L is finitely rigid if all irreducible components of Vn(L) have dimension dn and contain at
least one realization in Rn spanning Rn. In particular, if Vn(L) has two irreducible components (of
dimension dn) and contains a realization which spans Rn, then L is globally rigid.

Proof. Let us take a realization Ri ∈ (Rn)r which spans Rn, which corresponds to a point
in (Rn)r. The action of Iso+(Rn) on this point generates a dn-dimensional irreducible
variety Iso+(Rn)Ri, since the stabilizer of Ri reduces to the identity and Iso+(Rn) is itself
irreducible. However, on the other hand, we know that any congruent realization in
Rn of Ri belongs to this variety, so that Iso+(Rn)Ri ⊂ Vn(L). If we assume that each
irreducible component Vi of Vn(L) has dimension dn and one of its points corresponds
to a realization Ri spanning Rn, then we must have Vi = Iso+(Rn)Ri. Therefore, the set
of direct congruence classes in Vn(L) is finite, and L is finitely rigid. If Vn(L) has two
irreducible components and one realization R that spans Rn, then by considering an inverse
isometry φ and the realization R′ = φ(R) (which also spans Rn), we have that the two
irreducible components in Vn(L) are precisely Iso+(Rn)R and Iso+(Rn)R. Therefore, there
is only one congruent class (including direct and inverse isometric copies of R), and L is
globally rigid.

2.2.2. Complex Versus Real Realizations

When we set up a model to investigate a physical object, it is usually necessary to leave
out some of its properties and focus on the ones that are considered essential. Two main
reasons lie behind this modeling reduction: on the one hand, there can be characteristics
that play no role in the behaviour we are interested in, and so they can be safely ignored;
on the other hand, there can be properties that we should take into account, but that render
the investigation too complex to be successfully carried out with the available tools. In our
case at hand, we confront this latter inconvenience in several fronts. As an example, in our
model for linkages, we could take into account collisions among their bars, but this would
impose extra conditions that would greatly increase the complexity of the model (see [18]).

A more directly involved issue related to our model has to do with the ground field
we settle to work with. Since the bar-and-joint linkages we observe in the real world live
in the Euclidean 3-dimensional space, our models for linkages should live in Rn, with
computations performed with polynomials with real coefficients. However, it is well
known that real algebraic geometry algorithms are often computationally unfeasible when
working with a high number of variables and polynomials (see [19] and the references
indicated therein). Because of this reason, in the sequel, we will treat our mathematical
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model and the computations performed with the polynomials describing it as living in
a polynomial ring with complex coefficients, even though the visual models we will be
using throughout this work live in Rn—in other words, our visual models will restrict our
attention to the R-realizations of our mathematical model.

Example 2. As an example of how this complex/real duality in our modelization can introduce some
seemingly conflicting results when performing computations, let us consider a linkage L2 in R3

with three vertices {v1, v2, v3} and three edges of lengths l12 = 1, l23 = 1, l13 = 2 (see Figure 4).
We consider now the semi-free linkage V3(L2, Q2) that results from setting v1 ≡ A = (0, 0, 0)
and v3 ≡ C = (2, 0, 0), leaving v2 ≡ B = (Bx, By, Bz) unfixed, so that Q2 = {Ax, Ay, Az, Cx −
2, Cy, Cz}. Because of the length restrictions, in R3 we must have B = (1, 0, 0), and the real
dimension of all possible realizations satisfying these conditions should be zero.

Figure 4. A linkage with different real/complex behaviours.

However, introducing these data into Maple we obtain a different output:

> with ( P o l y n o m i a l I d e a l s ) :
> IL2 := <( Bx − Ax)^2 + ( By − Ay)^2 + ( Bz − Az)^2 − 1 ,

( Cx − Bx)^2 + ( Cy − By)^2 + ( Cz − Bz )^2 − 1 ,
( Cx − Ax)^2 + ( Cy − Ay)^2 + ( Cz − Az)^2 − 4 ,
Ax , Ay , Az , Cx − 2 , Cy , Cz>

> H i l b e r t D i m e n s i o n ( IL2 )

1

Instead of zero, we obtain 1 for the dimension of the variety of all realizations of this semi-free
linkage. This is due to the fact that the dimension computed by Maple is considering the complex
model instead of the real one, and it is not hard to see that in this wider setting, where complex values
of the variables are allowed, all possible realizations are of the form A = (0, 0, 0), C = (2, 0, 0) and
B = (1, t,±it), which constitutes a 1-dimensional variety in C3.

2.2.3. Faithfulness of the Model

As we have previously seen, given an abstract linkage L, we have associated the
algebraic variety Vn(L) ⊂ (Cn)r of C-realizations in Cn. Now, given a realization RL of
L, any isometry φ ∈ Iso(Rn) takes RL to another congruent realization φ(RL) ∈ Vn(L).
Therefore, there are many realizations congruent to RL in Vn(L). We say that a semi-free
linkage Vn(L, Q) is (almost) faithful to L if there is a (one-to-finite) bijective correspondence
between the direct congruence classes of all the possible realizations of L and the realizations
in Vn(L, Q). Example 1 above shows a very simple case of a semi-free 2-linkage V2(L1, Q1)
which is faithful to L1. As another example, let us consider the quadrilateral linkage L′

with four vertices {v1, v2, v3, v4} and four edges {e12, e23, e34, ande41} of unit length. We can
consider the semi-free 3-linkage by fixing some coordinates as follows: v1 ≡ A = (0, 0, 0),
v2 ≡ B = (1, 0, 0), v3 ≡ C = (Cx, Cy, 0) and v4 ≡ D = (Dx, Dy, Dz). This corresponds to
the ideal

I3(L′, Q′) = 〈(Bx − Ax)
2 + (By − Ay)

2 + (Bz − Az)
2 − 1, (Cx − Bx)

2 + (Cy − By)
2

+ (Cz − Bz)
2 − 1, (Dx − Cx)

2 + (Dy − Cy)
2 + (Dz − Cz)

2 − 1,

(Ax − Dx)
2 + (Ay − Dy)

2 + (Az − Dz)
2 − 1, Ax, Ay, Az, Bx − 1, By, Bz, Cz〉,
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which defines a variety V3(L′, Q′) of dimension 2. These two degrees of freedom can be
seen as a 1-dimensional movement of vertex C along a unit circle centered at the origin in
the z = 0 plane, together with another 1-dimensional movement for the vertex D along the
circumference where the spheres of unit radius with centers C and A meet. This algebraic
model for L′ would be faithful if each direct congruence class of all the possible realizations of
the abstract linkage L′ biunivocally corresponds to one point in the variety V(L′, Q′). However,
this is not the case here. To see this, consider for example the realizations with vertices
At = (0, 0, 0), Bt = (1, 0, 0), Ct = (0, cos t, sin t), Dt = (1, 0, 0) (0 ≤ t ≤ 2π), which form
a 1-parameter family of congruent realizations of L′. The interest of faithful models is
due to the fact that they avoid redundance of instances for congruent realizations, better
describing the set of distinct internal configurations that a free linkage has. We consider the
study of these particular models an interesting topic to be further explored.

Problem 1. Given an abstract linkage L, find (almost) faithful semi-free linkages for it.

2.2.4. Complexity of the Model

As already mentioned above, an algebraic geometry approach to the study of linkages
is bound to encounter computational difficulties when many vertices and edges come into
play. Even choosing C as the ground field to improve performance in our computations,
we will see that our model for the cubic linkage C exhausts the power of a modern CAS to
determine, for example, the dimension of the variety V3(C).

Indeed, let us consider the abstract linkage C with vertices V = {v1, . . . , v8}, edges
E = {e12, e23, e34, e14, e56, e67, e78, e5,8, e15, e26, e37, ande48} and with all lengths lij = 1 (see a
possible realization in Figure 5).

Figure 5. The cubic linkage C.

If we associate with the vertices {v1, . . . , v8} the capital letters {O, E, F, U, A, D, J, B}
respectively, we can proceed to introduce into Maple our model for this free 3-linkage as
follows and try to compute the dimension of the ideal V3(C).

> with ( Polynomial Ideals ) :
> IC := <(Ex − Ox)^2 + ( Ey − Oy)^2 + ( Ez − Oz)^2 − 1 ,

( Fx − Ex)^2 + ( Fy − Ey)^2 + ( Fz − Ez)^2 − 1 ,
(Ux − Fx )^2 + (Uy − Fy)^2 + (Uz − Fz )^2 − 1 ,
(Ox − Ux)^2 + (Oy − Uy)^2 + (Oz − Uz)^2 − 1 ,
(Dx − Ax)^2 + (Dy − Ay)^2 + (Dz − Az)^2 − 1 ,
( Jx − Dx)^2 + ( Jy − Dy)^2 + ( Jz − Dz)^2 − 1 ,
( Bx − Jx )^2 + ( By − Jy )^2 + ( Bz − Jz )^2 − 1 ,
(Ax − Bx)^2 + (Ay − By)^2 + (Az − Bz)^2 − 1 ,
(Ax − Ox)^2 + (Ay − Oy)^2 + (Az − Oz)^2 − 1 ,
(Dx − Ex)^2 + (Dy − Ey)^2 + (Dz − Ez)^2 − 1 ,



Mathematics 2021, 10, 2550 10 of 29

( Jx − Fx )^2 + ( Jy − Fy)^2 + ( Jz − Fz )^2 − 1 ,
( Bx − Ux)^2 + ( By − Uy)^2 + ( Bz − Uz)^2 − 1>

> HilbertDimension ( IC )

No output

The fact that we have a set of 24 variables and 12 polynomials would lead us to think
that the dimension of the linkage is 24 − 12 = 12, but after trying to check this in several
computer systems with diverse technical specifications, we found that powerful computer
algebra systems such as Maple are not capable of determining the dimension of a V3(C).
We will address this issue and related ones in Section 3.

2.3. Introductory Examples

To become better acquainted with the techniques, tools and terminology introduced
to deal with linkages in this article, it is good to show a couple of simple examples before
proceeding to the more challenging target that we will confront later.

Example 3. Let us consider the abstract linkage L3 in R3 with 6 vertices {v1, v2, v3, v4, v5, v6}
and 8 unit-length edges {e13, e14, e15, e16, e23, e24, e25, e26}. We consider now the semi-free 3-linkage
V3(L3, Q3), in which we fix v1 to the origin A = (0, 0, 0) and attach v2 to a point B = (0, 0, Bz)
moving freely on the Z-axis, so that Q3 = {Ax, Ay, Az, Bx, By}. The other vertices are identified
with points C = (Cx, Cy, Cz), D = (Dx, Dy, Dz), E = (Ex, Ey, Ez), F = (Fx, Fy, Fz), and must
lie in the plane bisector of segment AB (see Figure 6). The ideal I3(L3, Q3) associated to V3(L3, Q3)
can be simplified to

I3(L3, Q3) ≡〈C2
x + C2

y + C2
z − 1, D2

x + D2
y + D2

z − 1, E2
x + E2

y + E2
z − 1,

F2
x + F2

y + F2
z − 1, C2

x + C2
y + (Cz − Bz)

2 − 1, D2
x + D2

y + (Dz − Bz)
2 − 1,

E2
x + E2

y + (Ez − Bz)
2 − 1, F2

x + F2
y + (Fz − Bz)

2 − 1〉

Figure 6. A linkage whose dimension grows in degenerate cases.

A first approach to determine the dimension of the corresponding variety in C13 would lead us
to believe that it is 5, since point B has just one degree of freedom and, once it is fixed, the other four
points C, D, E, F have one degree of freedom each, making a total of 5 degrees of freedom. However,
when asking a CAS about the dimension of this linkage, we obtain 8 as the dimension, quite higher
than expected. The reason comes from the fact that under certain degenerate situations the
degrees of freedom of the construction can change (either increasing or decreasing). In this
case, when B and A coincide, it is easy to realize that each of the points C, D, E, F gains one degree
of freedom, making a total of 8 degrees of freedom whenever B = A. The reader can experiment
with this linkage at [20]. This warns us about trusting intuition, especially when confronting more
complex structures such as the cubic linkage we are about to see.
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Example 4. Now, let us consider an abstract 2-linkage L4 with four vertices {v1, v2, v3, v4} and
edges {e12, e23, e34, e41, e13}, all of length 1 except e13, which is of length

√
2. A realization is shown

in Figure 7.

Figure 7. A finitely rigid plane linkage.

Assigning variable coordinates A = (Ax, Ay), B = (Bx, By), C = (Cx, Cy) and D =
(Dx, Dy), we can describe the free linkage V2(L4) by means of the following ideal:

I2(L4) =〈(Bx − Ax)
2 + (By − Ay)

2 − 1, (Dx − Bx)
2 + (Dy − By)

2 − 1,

(Cx − Dx)
2 + (Cy − Dy)

2 − 1, (Ax − Cx)
2 + (Ay − Cy)

2 − 1,

(Dx − Ax)
2 + (Dy − Ay)

2 − 2〉,

The dimension of the corresponding variety V2(L4) is 3, and we would like to obtain all its
irreducible components. We use Maple to deal with these questions.

> with ( P o l y n o m i a l I d e a l s ) :
> IL4 := <(Ax−Bx )^2+(Ay−By )^2 −1 ,(Ax−Cx)^2+(Ay−Cy)^2 −1 ,

(Dx−Bx )^2+(Dy−By)^2 −1 , (Dx−Cx)^2+(Dy−Cy)^2 −1 ,
(Dx−Ax)^2+(Dy−Ay)^2−2>

> H i l b e r t D i m e n s i o n ( IL4 )
> I s R a d i c a l ( IL4 ) ; PD: = { Pr imeDecompos i t i on ( IL4 ) } ;
> f o r i from 1 t o 4 do H i l b e r t D i m e n s i o n (PD[ i ] ) od ;

3

true

PD := {〈−Ax−Ay + 2By + Dx−Dy,−Ax−Ay + 2Cy + Dx−Dy,

2Bx−Dy−Ax + Ay−Dx, 2Cx−Dy−Ax + Ay−Dx,

Ax2 − 2DxAx + Ay2 − 2DyAy + Dx2 + Dy2 − 2〉,
〈−Ax−Ay + 2By + Dx−Dy, Ax−Ay + 2Cy−Dx−Dy, 2Bx−Dy

−Ax + Ay−Dx, 2Cx + Dy−Ax−Ay−Dx, Ax2 − 2DxAx + Ay2

−2DyAy + Dx2 + Dy2 − 2〉,
〈−Ax−Ay + 2Cy + Dx−Dy,

Ax−Ay + 2By−Dx−Dy, 2Bx + Dy−Ax−Ay−Dx,

2Cx−Dy−Ax + Ay−Dx, Ax2 − 2DxAx + Ay2

−2DyAy + Dx2 + Dy2 − 2〉,
〈Ax−Ay + 2By−Dx−Dy,

Ax−Ay + 2Cy−Dx−Dy, 2Bx + Dy−Ax−Ay−Dx,
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2Cx + Dy−Ax−Ay−Dx, Ax2 − 2DxAx + Ay2

−2DyAy + Dx2 + Dy2 − 2〉}

3

3

3

3

These computations show that the ideal I2(L4) is radical, and its prime decomposition (in
Q[Ax, . . . , Dy], since Maple performs computations with the rationals as ground field) has four
3-dimensional ideals PD(i) for i = 1, 2, 3, 4. Thus, we have V2(L4) = ∪4

i=1V(PD(i)). In fact, it
can be checked that the realizations

R1 : Ax = 0, Ay = 0, Bx = 1, By = 0, Cx = 1, Cy = 0, Dx = 1, Dy = 1

R2 : Ax = 0, Ay = 0, Bx = 1, By = 0, Cx = 0, Cy = 1, Dx = 1, Dy = 1

R3 : Ax = 1, Ay = 1, Bx = 1, By = 0, Cx = 0, Cy = 1, Dx = 0, Dy = 0

R4 : Ax = 1, Ay = 1, Bx = 1, By = 0, Cx = 1, Cy = 0, Dx = 0, Dy = 0

satisfy Ri ∈ PD(k) if i = k for i, k ∈ {1, 2, 3, 4}. Therefore, the varieties V2(PD(i)) are distinct,
and by studying their Jacobians, it is easy to see that all are (real as well as complex) non-singular
varieties of dimension 3. Besides, V(PD(i)) is precisely the orbit of the action of Iso+(R2) on the
realization Ri. To see this, we recall first that, given a point (x, y) ∈ R2, an isometry φ : R2 → R2

can be expressed as

φ :
[

x
y

]
7→
[

a b
c d

][
x
y

]
+

[
tx
ty

]
,

where the square matrix is orthogonal and so satisfies a2 + b2 = 1, c2 + d2 = 1, ac + bd = 0,
adding ad− bc = 1 when φ is a direct isometry. Now, given a realization R = (A, B, C, D) =
(ax, ay, bx, by, cx, cy, dx, dy), the realization

φ(R) = (φ(A), φ(B), φ(C), φ(D)) = (Ax, Ay, Bx, By, Cx, Cy, Dx, Dy)

is directly congruent to R. For instance, for R1 = (0, 0, 1, 0, 1, 0, 1, 1), we obtain φ(R) = (tx, ty, a+
tx, c + ty, a + tx, c + ty, ax + by + tx, cx + dy + ty). Now, if we consider the variety K given by
the equations

Ax = tx Ay = ty
Bx = a + tx By = c + ty
Cx = a + tx Cy = c + ty
Dx = ax + by + tx Dy = cx + dy + ty

and eliminate the variables {a, b, c, d, tx, ty}, we obtain the Zariski closure π(K), where π : R14 →
R8 is the projection on the variables (Ax, . . . , Dy). Notice that in fact π(K) = Iso+(R2)R1. In
Maple, we can obtain this elimination ideal as follows:

> K:= <Ax − tx , Ay − ty , Bx − a − tx , By − c − ty , Cx − a − tx ,
Cy − c − ty , Dx − a − b − tx , Dy − c − d − ty , 0 , 0 , 0 , 0 , 0 ,
a^2 + c ^2 − 1 , b^2 + d^2 − 1 , a * b + c * d , a * d−b * c −1 >;

> H:= E l i m i n a t i o n I d e a l (K , { Ax , Ay , Bx , By , Cx , Cy , Dx , Dy } ) ;
> Pr imeDecompos i t i on (H) ;

〈−Ax− Ay + 2By + Dx− Dy,−Ax− Ay + 2Cy + Dx− Dy,

2Bx− Dy− Ax + Ay− Dx, 2Cx− Dy− Ax + Ay− Dx,

Ax2 − 2AxDx + Ay2 − 2AyDy + Dx2 + Dy2 − 2〉.
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That is, π(K) = V2(PD(i)). However, it is not hard to see that π projects onto V2(PD(i)),
and so V2(PD(i)) = π(K) = Iso+(R2)R1. The same argument applies to the other components
PD(i) for i = 2, 3, 4.

In Figure 8, we can see realizations for each of the components V(PD(i)). This is a good
example of a finitely rigid linkage in R2.

(R1) (R2)

(R3) (R4)

Figure 8. Realizations for V2(PD(i)) for i = 1, 2, 3, 4.

3. The Cubic Linkage

In (Section 2.2.4), we already introduced the cubic free linkage C, and there, we found
our first challenge to deal with, which is to determine the dimension of the variety V3(C).
In order to simplify the model, as we did in Example 1, we can start by reducing the
number of variables by fixing some of them, so that we are left only with the possible
different internal configurations of the linkage. Following the same notation for the cube
as in (Section 2.2.4), we set O = (0, 0, 0), U = (0, 1, 0), Ez = 0, obtaining the semi-free
3-linkage with ideal in C[Ox, Oy, Oz, . . . , Ax, Ay, Az] given by

I3(C, IC) =〈(Ex −Ox)
2 + (Ey −Oy)

2 + (Ez −Oz)
2 − 1,

(Fx − Ex)
2 + (Fy − Ey)

2 + (Fz − Ez)
2 − 1,

(Ux − Fx)
2 + (Uy − Fy)

2 + (Uz − Fz)
2 − 1,

(Ox −Ux)
2 + (Oy −Uy)

2 + (Oz −Uz)
2 − 1,

(Dx − Ax)
2 + (Dy − Ay)

2 + (Dz − Az)
2 − 1,

(Jx − Dx)
2 + (Jy − Dy)

2 + (Jz − Dz)
2 − 1,

(Bx − Jx)
2 + (By − Jy)

2 + (Bz − Jz)
2 − 1,

(Ax − Bx)
2 + (Ay − By)

2 + (Az − Bz)
2 − 1,

(Ax −Ox)
2 + (Ay −Oy)

2 + (Az −Oz)
2 − 1,

(Dx − Ex)
2 + (Dy − Ey)

2 + (Dz − Ez)
2 − 1,
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(Jx − Fx)
2 + (Jy − Fy)

2 + (Jz − Fz)
2 − 1,

(Bx −Ux)
2 + (By −Uy)

2 + (Bz −Uz)
2 − 1,

Ox, Oy, Oz, Ux, Uy − 1, Uz, Ez〉.

the semi-free linkage V3(C, QC) with QC = {Ox, Oy, Oz, Ux, Uy − 1, Uz, Ez} can be ex-
pressed in a more simplified way by getting rid of the fixed variables, so that we are
left with a simplified version C∗ of the cube with an associated ideal generated by 11
polynomials in 17 variables:

I3(C∗) =〈(Ex)
2 + (Ey)

2 + (Ez)
2 − 1,

(Fx − Ex)
2 + (Fy − Ey)

2 + F2
z − 1,

F2
x + (1− Fy)

2 + F2
z − 1,

(Dx − Ax)
2 + (Dy − Ay)

2 + (Dz − Az)
2 − 1,

(Jx − Dx)
2 + (Jy − Dy)

2 + (Jz − Dz)
2 − 1,

(Bx − Jx)
2 + (By − Jy)

2 + (Bz − Jz)
2 − 1,

(Ax − Bx)
2 + (Ay − By)

2 + (Az − Bz)
2 − 1,

A2
x + A2

y + A2
z − 1,

(Dx − Ex)
2 + (Dy − Ey)

2 + E2
z − 1,

(Jx − Fx)
2 + (Jy − Fy)

2 + (Jz − Fz)
2 − 1,

B2
x + (By − 1)2 + B2

z − 1〉.

From now on we will stick to this representation—and we will denote by V(C∗) and
by I(C∗) its corresponding variety and ideal to simplify notation—to perform calculations
for the cubic linkage. Unfortunately, our expectations of getting in this narrower setting
the dimension of V(C∗) by using the Maple CAS does not last long, for once again we get
stuck and no output is produced. Therefore, we have to resort to a different approach in
order to solve the dimension problem for this challenging linkage. Before proceeding to
address this issue, we start by studying algebraically the available degrees of freedom for
each vertex in the semifree linkage C∗.

3.1. Degrees of Freedom for the Vertices

In order to determine the degrees of freedom for a vertex P in our linkage V(C∗), it is
natural to consider the elimination ideal I∗P of I(C∗) for the variables that correspond to the
vertex. The variety V(I∗P) describes the valid positions of the point P, and its dimension
corresponds to the degrees of freedom of P. As an example, if we want to compute the
degrees of freedom for the vertex F (which after some familiarity with the cubic linkage, it is
expected to be 2), we would consider the ideal I∗F = I(C∗)∩C[Fx, Fy, Fz], and the dimension
of this ideal would give us the degrees of freedom we are looking for. Unfortunately, a
direct computation also produces no output when using a CAS, and we have to simplify
the input by adding restrictions (polynomials) to our ideal that will make the geometry of
the new linkage simpler without reducing the degrees of freedom of the vertex under study
and enabling successful computations. The idea lying behind this technique is simple. Let
us assume that we have a chain of ideals

I0 ⊂ I(C∗) ⊂ I1

and we know that the elimination ideals I∗0 = I0 ∩C[Fx, Fy, Fz] and I∗1 = I1 ∩C[Fx, Fy, Fz]
can be computed, and their dimensions coincide. From this we obtain that the dimension
of I∗F does coincide with that of I∗0 and I∗1 . To see how this works with the chosen vertex F,
let us first notice that for any valid position of the vertices F and E and setting Z = (0, 0, 1),
the vertices O, U, E, F, O + Z, U + Z, E + Z and F + Z do form a realization of the linkage
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V(C∗) (the reader is advised to have Figure 5 in mind to more easily follow the argument).
Therefore, adding the restrictions A = O + Z, B = U + Z, D = E + Z and J = F + Z to the
cubic linkage, we obtain a new semi-free linkage that does not restrict the movement of the
vertex F. Now, consider the ideals.

I0 =〈F2
x + (1− Fy)

2 + F2
z − 1〉,

I1 =I(C∗) + 〈Ax, Ay, Az − 1, Bx, By − 1, Bz − 1, Jx − Fx, Jy − Fy, Jz − Fz − 1, Dx − Ex,

Dy − Ey, Dz − 1〉.

It is clear that I0 ⊂ I(C∗) ⊂ I1. However, asking Maple about the elimination ideal of
I1 with respect the variables {Fx, Fy, Fz} produces a quick answer:

> with ( Polynomial Ideals ) :
> I1 := <Ex^2 + Ey^2 − 1 , Fx^2 + ( Fy − 1)^2 + Fz^2 − 1 ,

( Fx − Ex)^2 + ( Fy − Ey)^2 + Fz^2 − 1 , Ax^2 + Ay^2 + Az^2 − 1 ,
Bx^2 + ( By − 1)^2 + Bz^2 − 1 , ( Fx − Jx )^2 + ( Fy − Jy )^2
+ ( Fz − Jz )^2 − 1 , ( Ex − Dx)^2 + ( Ey − Dy)^2 + Dz^2 − 1 ,
( Bx − Ax)^2 + ( By − Ay)^2 + ( Bz − Az)^2 − 1 , ( Bx − Jx )^2
+ ( By − Jy )^2 + ( Bz − Jz )^2 − 1 , (Dx − Ax)^2 + (Dy − Ay)^2
+ (Dz − Az)^2 − 1 , (Dx − Jx )^2 + (Dy − Jy )^2 + (Dz − Jz )^2 − 1 ,
Ax , Ay, Az − 1 , Bx , By − 1 , Bz − 1 , Jx − Fx , Jy − Fy ,
Jz − Fz − 1 , Dx − Ex , Dy − Ey , Dz − 1>

> IF := E l i m i n a t i o n I d e a l ( I_1 , { Fx , Fy , Fz } )
> HilbertDimension ( IF )

〈Fx2 + Fy2 + Fz2 − 2Fy〉
2

Notice that, in fact, we have I∗0 = I∗1 , and so we deduce that dim(I∗F) = dim(I∗0 ) = 2,
as expected.

A similar technique can be applied to other vertices of the cube, and the final table of
degrees of freedom for the linkage V(C∗) are shown in Table 1.

Table 1. Degrees of freedom of the vertices of the cube.

Vertex Variables Restrictions Degrees of Freedom

O — 0

U — 0

A {Ax, Ay, Az} B = A + U 2
F = E + U
J = D + U

B {Bx, By, Bz} B = A + U 2
F = E + U
J = D + U

D {Dx, Dy, Dz} B = A + U 3
F = E + U
J = D + U

E {Ex, Ey} A = O + Z 1
B = U + Z
J = F + Z
D = E + Z
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Table 1. Cont.

Vertex Variables Restrictions Degrees of Freedom

F {Fx, Fy, Fz} A = O + Z 2
B = U + Z
J = F + Z
D = E + Z

J {Jx, Jy, Jz} B = A + U 3
F = E + U
J = D + U

3.2. Dimension of the Cube

Now we will focus our attention on the elusive problem of determining the dimension
of the ideal I(C∗). It is worthwhile mentioning here that the authors requested help from
several symbolic computation experts in order to directly compute this dimension through
the use of CAS such as Maple, CoCoA or Singular, but none of them was able to provide
us with an straightforward computational result. Therefore, we had to resort to more
involved arguments, which are partially supported by a CAS but at the same time require
the intervention of some human guidance in the process. We will first show

Theorem 1. The ideal
√

I(C∗) is not prime.

Proof. Let

C = 〈E2
x + E2

y − 1, (Fx − Ex)
2 + (Fy + Ey)

2 + F2
z − 1, F2

x + (1− Fy)
2 + F2

z − 1〉

C is not a prime ideal. Its primary decomposition consists of the prime ideals:

C1 = 〈Ex, Ey − 1, F2
x + (1− Fy)

2 + F2
z − 1〉,

C2 = 〈E2
x + E2

y − 1, F2
x + (1− Fy)

2 + F2
z , FyEx − FxEy − Fx, FxEx + FyEy − Fy〉

Now, let m1 = 〈Az − 1, Ay, Ax, Ey − 1, Ex, Dz − 1, Dy − 1, Dx, Bz − 1, By − 1, Bx, Fz, Fy −
1.Fx − 1, Jz − 1, Jy − 1, Jx − 1)〉, m2 = 〈Az − 1, Ay, Ax, Ey − 1, Ex, Dz − 1, Dy − 1, Dx, Bz −
1, By − 1, Bx, Fz, Fy − 1, Fx − 1, Jz − 1, Jy − 1, Jx − 1〉. These are maximal ideals such that
I(C∗) + C1 ⊆ m1, I(C∗) + C2 ⊆ m2, C2 6⊆ m1, C1 6⊆ m2 and I(C∗) have at least two
associated primes.

Consider the configuration of the cube without the vertex A. Let IA be the ideal in 14
variables that contains all the generators of I(C∗) without variables Ax, Ay, Az.

The dimension of IA can be computed with Maple, and it is the expected dimension
dim(IA) = 6:

> with ( Polynomial Ideals ) :
> IA:= <Ex^2+Ey^2 −1 , Fx^2+(Fy−1)^2+Fz^2 −1 ,

( Fx−Ex )^2+( Fy−Ey)^2+Fz^2 −1 ,
Bx^2+(By−1)^2+Bz^2 −1 , ( Fx−Jx )^2+( Fy−Jy )^2+( Fz−Jz )^2 −1 ,
( Ex−Dx)^2+(Ey−Dy)^2+(Dz)^2 −1 ,
( Bx−Jx )^2+(By−Jy )^2+( Bz−Jz )^2 −1 ,
(Dx−Jx )^2+(Dy−Jy )^2+(Dz−Jz )^2 −1 >;

> HilbertDimension ( IA )

6

now, let P be a prime ideal containing I(C∗) and H the elimination ideal of P that eliminates
Ax, Ay, Az. Then, IA ⊆ H, so dim(H) ≤ 6. If RP is any realization of P, then RA = π(RP),
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which eliminates the coordinates corresponding to point A is a realization of H, and the
fiber π−1(RA) verifies:

dim(π−1(RA)) ≥ dim(V(P))− dim(V(H))

Thus, if the fiber π−1(RA), is finite dim(P) = dim(H) ≤ 6.
Thus, we only have to study ideals H that are contained in the set of points of

π(V(I(C∗))) whose fiber is not finite. In any case, π−1(RA) can be identified with an
algebraic subset of A2

x + A2
y + A2

z = 1 so dim(H) ≤ dim(P) ≤ dim(H) + 2.

The real case: Geometrically, if the fiber of a (real) realization RA is not finite, the spheres of
center O, D, B intersect in an infinitely number of points, and the centers O, D, B must be
collinear. Moreover, since the radius is one, two of the three points coincide.

Algebraically, this result can be stated as follows.

Theorem 2. Let P be a real radical prime ideal, I(C∗) ⊆ P. Assume that, for generic RP ∈ V(P),
π−1(π(RP)) is infinite. Then, 〈Bx, By, Bz〉 ⊆ P or 〈Dx, Dy, Dz〉 ⊆ P or 〈Dx − Bx, Dy −
By, Dz − Bz〉 ⊆ P.

Proof. Let I′A be the ideal representing edges AB, AD and AO in 9 variables. If we eliminate
two of the variables Ax, Ay, Az, we obtain a principal ideal generated by a polynomial of
the form:

p(B, D)A2
x + q1(B, D)Ax + q0(B, D)

p(B, D)A2
y + r1(B, D)Ay + r0(B, D)

p(B, D)A2
z + s1(B, D)Az + s0(B, D)

the leading polynomial p(B, D) does not depend on which variable is kept. This polynomial
has the following meaning. Consider the matrix1 0 0 0

1 Bx By Bz
1 Dx Dy Dz

.

The three minors m1, m2, m3 of the matrix containing the first column vanish if and
only if points O, B, and D are collinear. Then, by computation, it can be checked that

p(B, D) = m2
1 + m2

2 + m2
3.

Since P is a real radical, m1, m2, m3 ∈ P.
With these conditions:

(D2
x + D2

y + D2
z)(B2

x + B2
y + B2

z)((Dx − Bx)
2 + (Dy − By)

2

+ (Dz − Bz)
2) ∈ I′A + 〈m1, m2, m3〉

that is, denoting by ||P||2 the sum P2
x + P2

y + P2
z for a point P of coordinates (Px, Py, Pz),

||D||2 · ||B||2 · ||(D− B)||2 ∈ I′A + 〈m1, m2, m3〉

Hence, either 〈Dx, Dy, Dz〉 ⊆ P or 〈Bx, By, Bz〉 ⊆ P or 〈Dx − Bx, Dy − By, Dz − Bz〉 ⊆
P.

The complex case: In this context, the proof is more involved. If P is a prime ideal containing
I(C∗) where the fiber is not finite, then at least one of the three polynomials of degree 2 in
the proof of the previous theorem must be identically zero, so either Ix = 〈p, q1, q0〉 ⊆ P or
Iy = 〈p, r1, r0〉 ⊆ P or Iz = 〈p, s1, s0〉 ⊆ P.



Mathematics 2021, 10, 2550 18 of 29

Theorem 3. Let P be a prime ideal, I(C∗) ⊆ P; then dim(P) ≤ 6.

Proof. Let H be the elimination ideal eliminating variables Ax, Ay, Az from P. If the fiber
of π(c) is finite, then dim(P) = dim(H) ≤ 6.

Assume then that the fiber over π(c) is infinite. Then Ix ⊆ H or Iy ⊆ H or Iz ⊆ H.
The ideals Ix, Iy, Iz are neither prime nor radical and are quite complicated. However,

we can compute the minimal associated primes over Q. To accomplish this, let

v = Dz(Bz − Dz)Bz(BzDy − ByDz)(B2
x + B2

y + B2
z)(B2

x + B2
y + B2

z − 4)

Then, v2 ∈ Ix, so, if F is the set of irreducible factors of v,

√
Ix =

⋂
f∈F

√
(Ix + ( f ))

We can compute the radical and primary decomposition of the ideals on the right.
Taking the minimal primes, we obtain the list of ideals

T1, T2, T3, T4, T5, T6, T7, Wx,

where

T1 =〈Dx, Dy, Dz〉,
T2 =〈Bx, By, Bz〉,
T3 =〈Bx − Dx, By − Dy, Bz − Dz〉,
T4 =〈B2

x + B2
y + B2

z , D2
x + D2

y + D2
z , DxBx + DyBy + DzBz, BzDy − ByDz,

BzDx − BxDz, ByDx − BxDy〉,
T5 =〈B2

x + B2
y + B2

z , D2
x + D2

y + D2
z − 4, DxBx + DyBy + DzBz〉,

T6 =〈B2
x + B2

y + B2
z − 4, D2

x + D2
y + D2

z , DxBx + DyBy + DzBz〉,

T7 =〈B2
x + B2

y + B2
z − 4, D2

x + D2
y + D2

z − 4, DxBx + DyBy + DzBz − 4〉,

Wx =〈D2
y + D2

z , B2
y + B2

z , BzDy − ByDz, ByDy + BzDz〉.

T1, T2, and T3 are the ideals that appear in the discussion of the real case. T4 is not real
radical and is prime over Q(i). T5, T6, andT7 are not prime over Q(i). These seven ideals
are invariant under permutations of coordinates x, y, z, so they are also minimal prime
ideals of Iy and Iz.

Wx is not a minimal prime of Iy or Iz. However, we can check that the conditions of
the ideal I′A + Wx fail to impose that the fiber is infinite. If we repeat the same process with
I′A + Wx, we obtain ideals contained in the set of ideals Ti. By symmetry, the same happens
with the analogous ideals Wy and Wz that appear in the decomposition of Iy and Iz.

Now, we obtain the ideal P must contain one of the ideals

Ci + Tj + I(C∗), 1 ≤ i ≤ 2, 1 ≤ j ≤ 7.

where the ideals Ci are the ones described in Theorem 1. Still, we are not able to compute
the dimension of all these ideals directly. Instead, we can find, for each ideal Ci + Tj, a
subset of generators Sij of I(C∗) such that

dim(Ci + Tj + Sij) = 6,

so
dim(P) ≤ dim(Ci + Tj + I∗Q) ≤ dim(Ci + Tj + Sij) = 6
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Corollary 1. If I(C∗) ⊆ P is a minimal prime ideal, then dim(P) = 6. In particular, dim(I(C∗)) = 6.

Proof. By Krull’s height theorem, since I(C∗) is generated by 11 polynomials in 17 variables,
height(P) ≤ 11. It follows that dim(P) ≥ 6. By Theorem 3, dim(P) ≤ 6, so dim(P) = 6.

3.3. Rigidification of the Cube

We have already seen that the cube is not rigid at all, and have computed its internal
degrees of freedom, which add up to 6. It is therefore reasonable to believe that by adding
six extra bars to this linkage, starting from an initial realization such as that of the regular
cube, we can achieve a rigidification of the cube in the sense that it will become at least a
finitely rigid linkage. Of course, many ways of choosing these extra bars can be considered,
but a quite natural possibility is shown in Figure 9. We can actually ask Maple about the
dimension of the associated ideal of this linkage CR with the added conditions

E2
x + (Ey − 1)2 = 2,

A2
x + (Ay − 1)2 + A2

z = 2,
(Ax − Ex)2 + (Ay − Ey)2 + A2

z = 2,
(Jx − Ex)2 + (Jy − Ey)2 + J2

z = 2,
J2
x + (Jy − 1)2 + Jz = 2,
(Jx − Ax)2 + (Jy − Ay)2 + (Jz − Az)2 = 2,

and we can also try its primary decomposition in the rationals:

Figure 9. Adding bars to the cube to make it rigid.

> with ( Polynomial Ideals ) :
> RC:= <Ex^2+Ey^2 −1 ,Fx^2+(Fy−1)^2+Fz^2 −1 ,

( Fx−Ex )^2+( Fy−Ey)^2+Fz^2 −1 , Ax^2+Ay^2+Az^2 −1 ,
Bx^2+(By−1)^2+Bz^2 −1 , ( Fx−Jx )^2+( Fy−Jy )^2+( Fz−Jz )^2 −1 ,
( Ex−Dx)^2+(Ey−Dy)^2+(Dz)^2 −1 , ( Bx−Ax)^2+(By−Ay)^2
+(Bz−Az)^2 −1 , ( Bx−Jx )^2+(By−Jy )^2+( Bz−Jz )^2 −1 ,
(Dx−Ax)^2+(Dy−Ay)^2+(Dz−Az)^2 −1 , (Dx−Jx )^2+(Dy−Jy )^2
+(Dz−Jz )^2 −1 , Ex^2+(Ey−1)^2 −2 , Ax^2+(Ay−1)^2+Az^2 −2 ,
Jx ^2+( Jy −1)^2+ Jz ^2 −2 , ( Jx −Ex )^2+( Jy −Ey)^2+ Jz ^2 −2 ,
(Ax−Ex )^2+(Ay−Ey)^2+Az^2 −2 , (Ax−Jx )^2+(Ay−Jy )^2
+(Az−Jz )^2−2>

> HilbertDimension (%)

0

> PP := { PrimaryDecomposition (CR ) } : nops(%)
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64

By adding the commands

> PRP:= PrimeDecomposition (CR)
> f o r i from 1 to 64 do IdealContainment ( PP [ i ] , PRP[ i ] , PP [ i ] ) od ,

we can also check that the primary ideals in the primary decomposition of I(CR) are
actually prime. Each of these 0-dimensional 64 prime ideals corresponds to a realization of
the rigidified cube. They can be explicitly obtained in Maple with

> f o r i from 1 to 64 do H[ i ] : = Bas i s ( PP [ i ] , tdeg ) od :
f o r i from 1 to 64 do S [ i ] : = solve (H[ i ] , { Ex , Ey , Ax , Ay, Az ,
Jx , Jy , Jz , Fx , Fy , Fz , Bx , By , Bz , Dx , Dy, Dz } ) od ;
f o r i from 1 to 64 do subs ( S [ i ] , CR) od :

Each of these 64 realizations fall into one of 16 different congruent classes. In [21], all
of them have been parametrized and visualized in a GeoGebra construction. Table 2 shows
the positions of the vertices for a representative of each congruence class.

Table 2. Representatives of non-congruent realizations of the rigid cube CR.

(Ax, Ay, Az) (Bx, By, Bz) (Dx, Dy, Dz) (Ex, Ey, Ez) (Fx, Fy, Fz) (Jx, Jy, Jz)

(0, 0, 1) (0, 1, 1) (1, 0, 1) (1, 0, 0) (1, 1, 0) (1, 1, 1)

(0, 0, 1) ( 2
3 , 1

3 , 1
3 ) (1, 0, 1) (1, 0, 0) (1, 1, 0) (1, 1, 1)

(0, 0, 1) (0, 1, 1) ( 1
3 , 2

3 , 1
3 ) (1, 0, 0) (1, 1, 0) (1, 1, 1)

(0, 0, 1) (0, 1, 1) (1, 0, 1) (1, 0, 0) ( 1
3 , 1

3 , 2
3 ) (1, 1, 1)

(0, 0, 1) ( 2
3 , 1

3 , 1
3 ) ( 1

3 , 2
3 , 1

3 ) (1, 0, 0) (1, 1, 0) (1, 1, 1)

(0, 0, 1) (0, 1, 1) ( 1
3 , 2

3 , 1
3 ) (1, 0, 0) ( 1

3 , 1
3 , 2

3 ) (1, 1, 1)

(0, 0, 1) ( 2
3 , 1

3 , 1
3 ) (1, 0, 1) (1, 0, 0) ( 1

3 , 1
3 , 2

3 ) (1, 1, 1)

(0, 0, 1) ( 2
3 , 1

3 , 1
3 ) ( 1

3 , 2
3 , 1

3 ) (1, 0, 0) ( 1
3 , 1

3 , 2
3 ) (1, 1, 1)

(0, 0, 1) (− 2
3 , 1

3 , 1
3 ) ( 1

3 ,− 2
3 , 1

3 ) (1, 0, 0) ( 1
3 , 1

3 ,− 2
3 ) (− 1

3 ,− 1
3 ,− 1

3 )

(0, 0, 1) ( 4
9 , 1

9 , 1
9 ) ( 1

3 ,− 2
3 , 1

3 ) (1, 0, 0) ( 1
3 , 1

3 ,− 2
3 ) (− 1

3 ,− 1
3 ,− 1

3 )

(0, 0, 1) (− 2
3 , 1

3 , 1
3 ) ( 1

9 , 4
9 , 1

9 ) (1, 0, 0) ( 1
3 , 1

3 ,− 2
3 ) (− 1

3 ,− 1
3 ,− 1

3 )

(0, 0, 1) (− 2
3 , 1

3 , 1
3 ) ( 1

3 ,− 2
3 , 1

3 ) (1, 0, 0) ( 1
9 , 1

9 , 4
9 ) (− 1

3 ,− 1
3 ,− 1

3 )

(0, 0, 1) ( 4
9 , 1

9 , 1
9 ) ( 1

3 ,− 2
3 , 1

3 ) (1, 0, 0) ( 1
9 , 1

9 , 4
9 ) (− 1

3 ,− 1
3 ,− 1

3 )

(0, 0, 1) ( 4
9 , 1

9 , 1
9 ) ( 1

9 , 4
9 , 1

9 ) (1, 0, 0) ( 1
3 , 1

3 ,− 2
3 ) (− 1

3 ,− 1
3 ,− 1

3 )

(0, 0, 1) (− 2
3 , 1

3 , 1
3 ) ( 1

9 , 4
9 , 1

9 ) (1, 0, 0) ( 1
9 , 1

9 , 4
9 ) (− 1

3 ,− 1
3 ,− 1

3 )

(0, 0, 1) ( 4
9 , 1

9 , 1
9 ) ( 1

9 , 4
9 , 1

9 ) (1, 0, 0) ( 1
9 , 1

9 , 4
9 ) (− 1

3 ,− 1
3 ,− 1

3 )

As mentioned earlier, our choice of bars in this rigidification process is not unique.
The interested reader is invited to explore other possibilities, such as, for example, the one
showed in Figure 10, of a similar nature but with quite a different outcome.
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Figure 10. Is this a rigid cube?

4. A Visual Modelization of the Cube in Geogebra
4.1. Problems Arising in Dynamic Geometry Models

Before introducing some visual models of the cube developed in the DGS GeoGebra,
it is interesting to highlight some aspects when dealing with this kind of software that
impose certain limitations in geometry constructions. These limitations play an important
role when trying to build realistic, virtual models for linkages.

4.1.1. The Hierarchy of Dg Constructions

When trying to model linkages in DGS such as GeoGebra, some difficulties arise when
trying to imitate the behaviour that these mechanisms show in physical constructions. One
of these difficulties has to do with the order in which the steps in a geometric construction
are performed (see also [10] for a similar discussion). As an example, let us consider the
construction of a square linkage OUFE on the plane (see Figure 11) using GeoGebra.

Figure 11. A square linkage.

We can fix vertices O and U at points (0, 0) and (1, 0), respectively. Then, we place
the vertex E on the circumference c with center O and radius 1, which can move freely
along c (so E has 1 degree of freedom). In order to obtain F, we find the intersection of
circumferences with centers U and E and radius 1. However, because of the very same
process of the construction, F becomes determined by the positions of E and U, and it has
no degrees of freedom at all (i.e., F cannot be dragged). Of course, following a different set
of instructions, we could have provided F with one degree of freedom, and then E would
be determined by O and F. However, if one thinks of a physical version of this linkage
made with bars and joints, after fixing the positions of O and U, one still would be able to
change the linkage configuration by dragging either E or F, so that the other vertex would
follow the trail preserving the structure of the linkage. This physical behavior, in which the
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degrees of freedom of the vertices in a linkage are automatically redistributed depending
on the vertex on which the force is applied, is not present in DGS constructions.

4.1.2. The Problem of Continuity

Another well-known problem arising in the context of DGS is related to the continuity
of geometric constructions and the choice of branches in algebraic curves. For a very simple
example, let us consider in GeoGebra a linkage with two bars and three vertices A, B and D
as shown in Figure 12. The vertex A is fixed at the origin, and the vertex B can move along
the horizontal axis y = 0. The bars have length 1. If the construction is made by the most
natural construction (setting D as an intersection point of unit circles centered at A and B),
and we slide B along the X-axis, a funny thing happens when B crosses point A from its
left side to its right side. The vertex D jumps from the upper half-plane to the lower one,
and continuity fails (apart from the fact that D is not defined when A = B). In a real world
bar-and-joint linkage, we would not expect this kind of behavior.

Figure 12. Continuity problems in DGS linkages.

Other example of an unwanted behaviour in DGS linkages is observed in a typical
Watt’s linkage construction (see Figure 13), where only one of the two branches that
compose the algebraic curve that the point T could describe in a physical model is actually
swept in the virtual GeoGebra modelization.

For a comprehensive discussion of the reasons behind these technical issues concerning
the continuity of constructions when using a DGS, see [1,22].
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Figure 13. The Watt’s linkage, showing in green the swept branch of the geometric locus.

4.2. Description of Our Visual Models

We describe here our proposal for a visual model constructed with the DGS GeoGebra.
The choice of this software relies not only on the fact that its 3D view allows for a better
modelization of 3-dimensional structures, but also because nowadays, GeoGebra stands as
one of the most-used DGS in a diverse range of educational and academic environments.
As an initial proposal for setting up an appropriate model for the cube, we established the
following list of properties that it should have:

1. Our model can be positioned in any admissible realization, including degenerate ones,
after fixing the position of the observer by determining the vertices O, U and E as
described in Section 3.

2. The model is continuous, and joints and bars behave as expected in a real linkage
model.

3. When selecting a vertex to drag it, it has the maximum geometrically possible degree
of freedom, as shown in Table 1.

4. It is reasonably easy to obtain some distinguished configurations, including degenerate
ones such as those described in [23].

Unfortunately, the problems described in previous sections about the intrinsic limi-
tations when working with DGS constructions in a straightforward way are a source of
difficulties for obtaining a visual model satisfying, simultaneously, all properties initially
aimed at. On the other hand, with the software GeoGebra, some of these obstacles can
be overcome by means of the use of scripts (sequences of programming commands that
are activated and executed when a point is dragged, significantly altering the behavior
assigned by default in the DGS) attached to the objects in geometric constructions. These
scripts can modify the behavior of elements under certain circumstances (like degenerate
realizations) or even impact the whole construction under specific conditions. This will
give us some extra flexibility for designing visual equivalents to the mathematical linkages
we discussed in previous sections.

In Section 4.1.1, we pointed out the fact that DGS constructions assign fixed degrees
of freedom to their vertices. For the cube C∗ we are working with, with dimension 6
and whose vertices have been labeled O, U, E, F, A, B, J, D, there is a variety of ways of
building it in the GeoGebra 3D view with its available tools (see [24] for an introduction
to the 3D graphics view in GeoGebra), and depending on the instructions used and the
order in which the vertices are determined, the distribution of these 6 degrees of freedom
on the vertices do change (we assume degrees 0, 0 for the vertices with given initial
conditions O, U respectively). Henceforth, we will describe a distribution of degrees of
freedom on the vertices of the cube by means of the corresponding sequence of degrees
OdO −UdU − EdE − FdF − AdA − BdB − JdJ − DdD, where dP is the degree of freedom
assigned to vertex P.
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Construction 1. In [25], a cubic linkage is shown with our usual initial conditions for its
positioning in R3: vertices O, U fixed and vertex E lying on plane z = 0. In this construction
point, A moves freely on the 2-dimensional unit sphere with center O, and J has 3 degrees
of freedom. Since E is constrained to move along the horizontal unit circle with center O, it
has one degree of freedom. Therefore, the distribution of degrees of freedom corresponds
to the sequence O0-U0-E1-F0-A2-B0-J3-D0, and all the positions of the cube (except those
that imply the coincidence of two or more vertices) are thus determined by the positions
of E, A and J. Indeed, a vertex such as B is built as the intersection of the unit spheres
with centers A, U and J. Since this intersection in general contains two points, there are
two possibilities for choosing B, and this leads to two isomer realizations with respect to B.
The same happens with vertices D and F. This explains the isomer options available in the
construction. See Figure 14.

Notice also that some restrictions do apply to the movement of these vertices, due to
the fact that the unit length of the edges must be preserved. For instance, since the triplet
of points {A, E, J} are adjacent to D, they must lie in the unit sphere with center D, and
therefore the circumference that they determine must have a radius not greater than 1.
Something similar happens with the triplets {U, E, J}, {U, A, J} and {E, A, J}. The use of
scripts in GeoGebra facilitates the implementation of these restrictions on the vertices, so
that the resulting models do preserve the properties of the linkage when dragging them on
the 3D view.

Figure 14. A GeoGebra cube with degrees of freedom O0-U0-E1-F0-A2-B0-J3-D0.

Construction 2. In [26], a more sophisticated model has been designed, starting from a
distribution of degrees of freedom O0-U0-E1-F1-A2-B1-J0-D1 for general positions and
allowing degenerate constructions when some vertices coincide. Next, we proceed to
describe this model in more detail. See Figure 15.

Again, following our usual initial restrictions we have fixed the points O and U.
Additionally, the point E describes its path in the z = 0 plane. As in the previous model,
point A can move freely on a unit sphere centered at O independently of point E. Thus, the
positions of E and A determine the circular paths along which we can attach the vertices
F, B and D by means of the GeoGebra command Point(<object>). On the other hand,
vertices F, B and D determine only two possible positions for the vertex J, giving rise to
two isomer realizations (with respect to J) that can be chosen by marking a checkbox.

One can also make some vertices coincide. These degenerate realizations do change
the distribution of degrees of freedom thanks to the use of GeoGebra scripting; in order to
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easily detect the degrees of freedom that vertices acquire in these particular configurations
we have used the following color code:

Black: Fixed vertices.

Grey: Vertices with 0 degrees of freedom.

Blue: Vertices with 1 degree of freedom.

Green: Vertices with 2 degrees of freedom.

For instance, by activating the F = O and B = O checkboxes, point J acquires 1
degree of freedom and changes its color to blue. If we also activate the checkbox D = O,
vertex D loses its freedom, but point J acquires another degree of freedom, changing its
color to green. It is interesting to see here that, whichever configuration is chosen, we can
see that the cube never exceeds the 6 internal degrees of freedom that correspond to our
algebraically proved fact that the dimension of the linkage V3(C∗) is 6.

Finally, the checkbox J = O activates the particular case in which two opposite vertices
of the cube coincide. Note that since, in addition to O, vertex U is also fixed, the vertex E
can be no farther than

√
3 from U. The same happens to vertex A with respect to vertices

U and E. These excluded zones for E and A are represented in the construction in the form
of shaded spherical caps.

Figure 15. A GeoGebra cube with degrees of freedom O0-U0-E1-F1-A2-B1-J0-D1 with degenerate
cases.

4.3. Related Constructions in Geogebra

During the development of this work, a variety of constructions made in GeoGebra
were designed to address different aspects concerning the visualization of linkages in a
DGS environment. These constructions have been included in the GeoGebra book [27],
and some of them have already been referenced along this work. This broad collection of
applets, which constitutes a showcase of different techniques to build linkages in GeoGebra,
has been divided into the following sections:

Planar linkages: This section describes the fundamentals of planar linkages construction,
especially the rhombus (4-bar linkage), as it is the simplest closed and flexible planar
configuration available. The intrinsic problems that appear with the use of DGS and
are commented on in Section 4.1 are also introduced. Finally, examples of the use of
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scripts are shown to try to solve them, such as the one that enables the transmission
of movement between vertices—what we call the dragging effect—in contrast with
traditional geometric constructions in DGS.

Other planar linkages: Although the main objective of this GeoGebra book is the study of
the structure of the cubic linkage, which corresponds to a graph without one-degree
vertices, we considered also chains with either free or fixed extremes (partly because
of their interest in connection with applications such as simulations of robotic arms),
improving their modeling thanks to the dragging effect mentioned above. In this
section, we can see some simple planar examples.

3D linkages: This section serves as an introduction to the study of the articulated cube. It
shows, in simpler structures, some examples of the problems that will appear in the
construction of the cube, such as visualizing certain linkages to decide on their rigidity
(as in [28]) or the sudden changes in degrees of freedom mentioned in Example 3.

Articulated cube: This is the main section of the GeoGebra book. In addition to construc-
tions 1 and 2 in Section 4.2, we can observe the cube with 6 added bars as described in
Section 3.3, with all its 64 possible realizations obtained by means of six parametrized
variables. In the opposite direction, a cube is also shown in which no constraints
are imposed on its vertices apart from those determined by the fixed length of the
bars ([29]). Thanks to the dragging effect already mentioned, which goes beyond the
algebraic treatment of linkages developed here, this construction behaves in a very
realistic way, offering even an apparent physical behaviour connected to the inner
workings of the GeoGebra software.

The interested reader is invited to experiment with this set of constructions and to
explore their inner workings by inspecting the GeoGebra scripts attached to some of their
constituting elements. Each construction is also accompanied by an explanation of its main
characteristics.

4.4. Conclusions and Future Work

Throughout this work, we have addressed some open questions that (at least to our
knowledge) first appeared in the last section of [10] and which will help us to summarize
our contributions by quoting them and updating their current status:

(i) “Yet, we have to report that some jumps occur between isomer positions, near singular
placements. For instance, when a = 270◦, the parallelogram AOBU collapses. In view of the
large bibliography on the continuity problem for dynamic geometry, it seems a non-trivial task
to model a cube avoiding, if possible at all, such behavior.”

Even though we did not completely solve the continuity problem for linkages, which
constitutes an intrinsic difficulty in DGS geometric constructions, through the use of
GeoGebra scripts, we have been able to simulate continuity in some of them (see, for
example, [29]), although in the process we have lost some of the cleanliness of more
formal, purely geometric constructions.

(ii) “We remark that the cube we have modeled has six internal degrees of freedom, one for each
free parameter we have introduced. But its distribution has not been homogeneous. For
instance, the final vertex has been constructed without any degrees of freedom, by imposing
some constraints: being simultaneously in a sphere and in two planes perpendicular to some
diagonals. This difficulty to make a model where all semi-free vertices behave homogeneously
is apparently similar to the planar parallelogram case, but now we cannot conclude that it is
impossible to make such a construction, since, after fixing O and U we still have six vertices
and six degrees of freedom. It is probably a consequence of our approach and not an intrinsic
characteristic.”

With respect to the dimension of the cube and the possible degrees of freedom for
its vertices, we have completely solved the associated algebraic problem in Section 3,
and with respect to distributing homogeneusly the six available degrees of freedom
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among six vertices of the cube, we have found a construction (see [30]) that achieves
this, although without keeping fixed the adjacent vertices O and U.

(iii) “Could you fix (say,by pasting some rigid plates) one, two,. . . facets in the cube and still have
some flexibility on the cube? How many internal degrees of freedom will remain?"

Some examples of adding bars to limit the flexibility of the cube and the corresponding
algebraic discussion have been shown in Section 3.3.

(iv) “For a planar parallelogram, one can feel the one-degree of freedom by checking that once you
fix one semi-free vertex, the whole parallelogram gets fixed. The same applies for the spatial
parallelogram. You have to fix, one after another, the two semi-free vertices. For the cube, how
can you feel its six degrees of freedom? Can you fix five semi-free vertices and still move the
cube?"

Construction [30] (see also Figure 16) shows an example of a semi-free linkage for the
cube where the six degrees of freedom of its internal configurations have been evenly
distributed among six of its vertices (U, A, E, B, D and F), leaving two of them (O and
J) with 0 degrees of freedom. Notice that, in non-degenerate configurations, dragging
any of the vertices B, D or F will leave fixed all the other five vertices with one degree
of freedom. This answers (at least partially) in the affirmative the question above.

Figure 16. A uniform distribution of six degrees of freedom among six vertices.

In comparison to the simplicity of the outcome of that previous approach, we consider
that in the current work, we have made contributions in order to gain a better under-
standing of the cubic linkage, obtaining this time the realization of more sophisticated
3D visualizations in GeoGebra that represent, in our opinion, a step forward to achieve
realistic—but symbolic geometry-driven—models of complex linkages in DGS software.
Even though we still face pending issues regarding the construction of continuous models
that behave, in some sense, closer to linkages in a real world setting, we consider that we
have gained a deeper, mathematically well-founded insight concerning diverse aspects
such as the algebraic dimension of the cube, the possible distributions of degrees of freedom
among its vertices, and the translation of this information into reliable 3D visualizations.

In the near future, we plan to design better DGS applets for this family of dynamic
structures, which will look and behave even more like some physical models that can
be built with materials as simple as just a few straws and strings (see, for instance, the
ingenious devices in [23,31], conceived for their use in a school environment).
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