
mathematics

Article

Discovering Geometric Inequalities: The Concourse of
GeoGebra Discovery, Dynamic Coloring and Maple Tools

Tomás Recio 1,*,† , Rafael Losada 2,† , Zoltán Kovács 3,† and Carlos Ueno 4,†

����������
�������

Citation: Recio, T.; Losada, R.;

Kovács, Z.; Ueno, C. Discovering

Geometric Inequalities: The

Concourse of GeoGebra Discovery,

Dynamic Coloring and Maple Tools.

Mathematics 2021, 9, 2548. https://

doi.org/10.3390/math9202548

Academic Editor: Juana Sendra

Received: 4 September 2021

Accepted: 6 October 2021

Published: 11 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Ingeniería Industrial, Escuela Politécnica Superior, Universidad Antonio de Nebrija,
C/Santa Cruz de Marcenado 27, 28015 Madrid, Spain

2 Sociedad Asturiana de Educación Matemática “Agustín de Pedrayes”, Federación Española de Sociedades de
Profesores de Matemáticas, Plaza Club Patín Gijón Solimar 1, 33213 Gijón, Spain; rafael.losada@gmail.com

3 The Private University College of Education of the Diocese of Linz, Salesianumweg 3, 4020 Linz, Austria;
zoltan@geogebra.org

4 CEAD Profesor Félix Pérez Parrilla, C/Dr. García Castrillo, 22, 35005 Las Palmas de Gran Canaria, Spain;
cuenjac@cead-laspalmas.net

* Correspondence: trecio@nebrija.es
† These authors contributed equally to this work.

Abstract: Recently developed GeoGebra tools for the automated deduction and discovery of geo-
metric statements combine in a unique way computational (real and complex) algebraic geometry
algorithms and graphic features for the introduction and visualization of geometric statements. In
our paper we will explore the capabilities and limitations of these new tools, through the case study
of a classic geometric inequality, showing how to overcome, by means of a double approach, the
difficulties that might arise attempting to ‘discover’ it automatically. On the one hand, through the
introduction of the dynamic color scanning method, which allows to visualize on GeoGebra the set of
real solutions of a given equation and to shed light on its geometry. On the other hand, via a symbolic
computation approach which currently requires the (tricky) use of a variety of real geometry concepts
(determining the real roots of a bivariate polynomial p(x, y) by reducing it to a univariate case
through discriminants and Sturm sequences, etc.), which leads to a complete resolution of the initial
problem. As the algorithmic basis for both instruments (scanning, real solving) are already internally
available in GeoGebra (e.g., via the Tarski package), we conclude proposing the development and
merging of such features in the future progress of GeoGebra automated reasoning tools.

Keywords: automated theorem proving in geometry; automated deduction in geometry; automated
reasoning in geometry; Dynamic Geometry; GeoGebra; computational algebraic geometry

1. Introduction

In recent years we are witnessing a rich interaction between two geometric instruments
which were initially born with different intentions in mind, but are converging and joining
forces nowadays to create a new generation of software for doing Geometry. On the one
hand there were the Geometric Automatic Theorem Provers (GATPs), which can be traced
back to the seminal work by Wu [1], with an increasing variety of methods and approaches
developed along the years, such as the Gröbner Basis Method, the Area Method, the Full-
Angle Method. . . . These methods have succeeded to automatically prove a large collection
of geometric statements, as can be seen for instance [2].

On the other hand, there were the Dynamic Geometry Software (DGS) programs
(some of the pioneers being The Geometric Supposer, Cabri, The Geometer’s Sketchpad, Geometry
Inventor or Thales) which initially were conceived as a tool for teaching Geometry in schools,
as a kind of digital assistant for the constructions traditionally made by ruler and compass
on the blackboard.

The GATPs based on algebraic techniques, such as Wu’s Method ([1,3]) or the Gröbner
Basis method ([4,5]), require frequently the manipulation of a large set of polynomials,

Mathematics 2021, 9, 2548. https://doi.org/10.3390/math9202548 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1011-295X
https://orcid.org/0000-0001-8558-9237
https://orcid.org/0000-0003-2512-5793
https://orcid.org/0000-0002-5030-2854
https://doi.org/10.3390/math9202548
https://doi.org/10.3390/math9202548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9202548
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9202548?type=check_update&version=2


Mathematics 2021, 9, 2548 2 of 29

which represents a given geometric construction. Unfortunately, this translation of geo-
metric properties into algebraic equations can be a tedious process. Dynamic Geometry
programs turned out to be an ideal interface to introduce geometric information, and the
extension of this software with convenient algebraic tools allowed the creation of a nat-
ural environment to work on automated proving in Geometry. This fruitful cooperation
was put into practice in several DGS programs such as Geometry Expert, GDI or GCLC,
with GeoGebra joining this list in recent years. Since its inception, GeoGebra put special
emphasis on becoming something more than a DGS, but a Mathematical Software where
not only the geometrical objects, but their algebraic counterparts, could be accessible and
visualized simultaneously. This, together with its increasing worldwide popularity ([6–8])
and free access for non-commercial use, makes GeoGebra a top choice for carrying out this
integration process with algebraic proving tools.

At present, GeoGebra is actively developing a set of new Geometric Automated
Reasoning Tools (GARTs) which not only are capable of proving geometric equalities
or inequalities, but allow the user to explore and discover facts about geometric figures.
The present work is aimed at showing some of these new tools, implemented in recent
versions of GeoGebra Discovery (an experimental version of GeoGebra), emphasizing
their ability to handle geometric inequalities. We also comment on its current strengths
and limitations, and how the visualization possibilities that offer the graphic view of
GeoGebra can illuminate the automatic resolution of geometric problems which involve
certain difficulties, due to the high complexity of some elements appearing along the
process (see [9] for an unpublished paper with a similar approach). To that end, we will
focus our attention on re-discovering and proving by computational means the geometric
inequality 5.3 of the collection [10]:

Proposition 1. If the lengths of the sides of a triangle are a, b, c, and the length of its circumradius
is R, then

a + b + c ≤ 3
√

3 R. (1)

Equality holds if and only if a = b = c.

In summary, our research goal is to show how to approach this Proposition through the
combination of a dynamic color scanning method and (real algebra) symbolic computations,
exemplifying the need to automatize this combination of tools, to address and to solve
some automated reasoning challenging issues that arise in the current GeoGebra Discovery
version.

In Section 2, we briefly describe the tools that are already available in the official
releases of GeoGebra, and which allow proving and discovering geometric equalities
in a given construction. In Section 3, we present new tools for dealing with geometric
inequalities, currently implemented in GeoGebra Discovery, an experimental version of
GeoGebra maintained by the first author where GARTs are first checked before official
release. In Section 4, we introduce the Dynamic Color Scanning Method, a powerful and
flexible visualization technique devised by the second author on GeoGebra that can be
helpful when symbolic computations or other visualization methods fail. To illustrate how
the previous tools can be employed and combined, in Section 5, we approach the task
of automatically proving the classical geometric inequality in Proposition 1, highlighting
the accomplishments that the new symbolic tools in GeoGebra Discovery achieve when
investigating geometric relations and inequalities, but commenting also on the current
limitations that hinder a full resolution of the problem. Section 6 combines the visualization
power of the dynamic color scanning method, together with the algebraic capabilities of
the software Maple to definitely settle Proposition 1. Finally, in Section 7, we include some
conclusions and propose lines of research to improve the performance and versatility of
GeoGebra in future versions.



Mathematics 2021, 9, 2548 3 of 29

2. The GeoGebra Automated Reasoning Tools

Since 2014, GeoGebra is making a systematic and permanent effort in order to develop
new Geometric Automated Reasoning Tools (GARTs) based on algebraic computations
that go beyond proving geometric statements, providing better feedback than just deciding
the truth or falsehood of a statement, and introducing instruments that actually lead to the
discovery of geometric facts (see [11,12], for some papers both dealing with the algebraic
algorithms and their implementation in GeoGebra). Given the school environment where
DGS programs are mainly utilized, these new features are aimed at providing students
with a kind of expert companion, a Geometer Automata (GA) as described in [13], to help
them explore geometric configurations and gain insight into the relations that exist among
its elements.

Currently, the CAS engine embedded in GeoGebra that performs the symbolic com-
putations required to use these reasoning tools is Giac ([14,15]), which has support for
symbolic computations such as finding the Gröbner basis of a polynomial ideal or deter-
mining whether a polynomial belongs or not to a given ideal. At present, the GARTs in
GeoGebra make use of Giac in order to establish equality relations among the elements
of a geometric construction. In the next section, we will present new developments that
expand the possibilities of these tools.

To give a rough sketch of how things work, let us start by setting up the basic sce-
nario. Let us assume that K (usually Q) is a field with an algebraically closed extension
L (usually C). Roughly speaking, let us assume that we have a geometric construction
and that we want to show whether a thesis concerning this construction always holds.
The construction starts by placing some free points Pi(u2i−1, u2i), i = 1, . . . , d, with their
coordinates taken in the field K. From these points we can construct new elements (points,
segments, lines, circles, etc.) that depend on the initial free points, eventually introducing
new free variables in the construction. These elements satisfy geometric relations that
can be expressed in form of polynomial equations ( we often make an abuse of notation
by identifying a polynomial p(x1, . . . , xn) with its corresponding polynomial equation
p(x1, . . . , xn) = 0 and/or its set of solutions) hk(u1, . . . , un) ∈ K[u1, . . . , u2d, u2d+1, . . . , un].
Among the variables {ui} we can choose a maximal set of independent variables (that is,
which do not hold polynomial relations among them). Usually, this set of independent
variables contains the coordinates of the initial free points, and its cardinal is related to the
degrees of freedom of the configuration. As a simple example, let us consider the construction

Take a point P in the perpendicular bisector of a segment AB.

We require two free points A(u1, u2), B(u3, u4), and a third point P(u5, u6) that must
lie in the perpendicular bisector of the segment AB, whose equation is given by

H1 :=
(

u5 −
u1 + u3

2

)
(u3 − u1) +

(
u6 −

u2 + u4

2

)
(u4 − u2) = 0. (2)

We are using here six variables, and there is one polynomial relation among them.
Intuitively speaking, our construction has five degrees of freedom (four for the coordinates
of the points A, B, plus one more that decides the height of the point P on the bisector).
Of course, for more complex constructions we would get not just one, but a collection of
polynomials H = {H1, . . . , Hm}. The points in Ln satisfying the polynomials in H form the
hypothesis variety V(H), and each of these points correspond to a particular instance of the
figure under study.

Now, after having settled our construction we would like to prove something. Let us
suppose we want to prove the following thesis (see Figure 1):

The distances from P to A and B are equal.



Mathematics 2021, 9, 2548 4 of 29

Figure 1. Proving with GeoGebra that the distances from a point P in the perpendicular bisector of
segment AB to its extremes are equal.

This thesis can also be expressed as a polynomial:

T := (u5 − u1)
2 + (u6 − u2)

2 − (u5 − u3)
2 − (u6 − u4)

2 = 0, (3)

and the set of its solutions in L6 is called the thesis variety V(T). Now, the proposition

If P is a point on the perpendicular bisector of the segment AB, then the distances from P to A
and B are equal.

Would be proved if we check that, for each possible configuration u := (u1, . . . , u6) ∈
L6 satisfying the relation H1(u) = 0, then T(u) = 0 also holds. In other words, if we
check that {H1(u) = 0 =⇒ T(u) = 0}. Using the language of algebraic geometry, this
amounts to say that the hypothesis variety V(H) is contained in the thesis variety V(T).
Now, in this new algebraic setting, we can take advantage of all the machinery related to
varieties, polynomial rings and ideals (with coefficients in the algebraically closed field
L). Since proving that V(H) ⊂ V(T) is equivalent to show that V(H) ∩ (Ln \V(T)) = ∅,
by adding an extra variable t and considering all our polynomials in L[u1, . . . , un, t] we
are led to show that V(H) ∩V(Tt− 1) = ∅ ⊂ Ln+1. By the Nullstellensatz Theorem, this
is the case if the ideal 〈H〉+ 〈Tt− 1〉 ⊂ L[u1, . . . , un, t] is 〈1〉. However, checking that 1
belongs to an ideal given by a set of generators can be algorithmically decided by checking
whether a Gröbner basis of the ideal reduces to {1} ([16], (Chapter 2)).

Remark 1. Notice that in the example above we actually have V(H1) = V(T), since T = 2H1.
In other words, the hypothesis and the thesis are equivalent.

Unfortunately, working in a Euclidean Geometry environment introduces certain
complications in the description given above, due to several reasons:

(i) The use of complex versus real geometry tools: Points in the Euclidean plane have real
coordinates, while the algebraic algorithms used within this framework are designed
for algebraically closed fields. Therefore, when we state that V(H) ⊂ V(T) we are
including points in V(H) with complex coordinates, which is more than what we
actually need. We could be missing valid theses which hold for all real points in V(H),
but not on the whole complex variety (see [17,18]). For example, let us consider the
following statement, usually called Clough’s conjecture [19], namely, the equality of



Mathematics 2021, 9, 2548 5 of 29

– the sum of segments l = EC, m = FB, and n = GA, where E, F, G are the feet of
the perpendiculars to the sides of an equilateral triangle from an arbitrary point
D,

– and 3p/2, where p is the length of side AB, i.e., 3p/2 is half the perimeter 3p of
the equilateral triangle ABC.

See [20] for detailed synthetic and algebraic proofs. Now, the algorithms we have
implemented in GeoGebra, if asked about the Relation between l +m+ n and 3/2 · p,
proceed, first, checking the numerically approximate equality of both quantities and,
if it holds, starting a symbolic protocol by considering the ideal generated by all
the polynomial equations describing the hypotheses. We emphasize here the terms
polynomial equations, because all the lengths l, m, n, p are described by expressing
l2, m2, n2, p2 as the sum of the squares of the differences of the coordinates of the
extremes of the corresponding segments, say, l2 = (c1 − e1)

2 + (c2 − e2)
2, etc. There

are neither square roots nor choice of positive signs for defining l, m, n, p, as this
approach would require real algebraic geometry methods. Thus, our hypotheses
ideal includes much more cases (in the complex geometry context) than intuitively
expected, and the thesis l + m + n = 3/2 · p, holds only on some of them (for example,
on those cases where l, m, n, p are positive).
Accordingly, GeoGebra Discovery declares that the formulated statement is “true on
parts, false on parts”, see Figure 2. This means that the underlying algorithm detects,
without having to compute a primary decomposition of the involved hypotheses ideal,
that the statement holds true on some components and is false on some others, see
item iii) below.

Figure 2. Checking Clough’s conjecture through GeoGebra Discovery yields “true on parts”

On the other hand, asking directly for the proof of Clough’s statement, see Figure 3,
an affirmative answer is obtained, together with a list (too long in this case to be
fully displayed in the Figure) of construction instances that should be avoided for
the truth of the statement: degenerate cases such as when the triangle collapses and,
also, variants of the thesis statement that hold just on the primary components of the
hypotheses where the given thesis is false.
This is related to the possibility, in this case, to modify the thesis so that it collects all
possible sign choices for l, m, n, p, by multiplying (l + m + n)− 3/2 · p by all possible
variants of such formula, changing signs for l, m, n, p, such as ((l −m + n)− 3/2 · p),
((l −m + n) + 3/2 · p), etc. See [21] for a detailed study of this way of understanding
real statements in a complex geometry context.



Mathematics 2021, 9, 2548 6 of 29

(a) (b)

Figure 3. (a) Asking GeoGebra Discovery to prove that the sum l + m + n is equal to the semiperimeter
3/2 f . (b) GeoGebra Discovery replies that the statement is true except in some degenerate cases
(described in the list after true in the last line of the Algebra window).

Of course, the reason for choosing a complex algebraic geometry approach for GeoGe-
bra automated reasoning tools is because algorithms based on complex geometry are
generally much more efficient than their real counterparts, and this aspect is of special
relevance for the implementation of GARTs in software with educational purposes.

(ii) Non-degeneracy conditions: In Geometry statements, whenever we mention objects
such as line segments, polygons, circles. . . , we implicitly assume certain conditions
on the points that are used to define those figures and render a theorem as true. As an
example, in a theorem on triangles we always assume that its vertices are non-collinear
points of the plane. These conditions are not easy to interpret by the GATPs and require
special care when dealing with them. The problem of non-degeneracy conditions,
which depends upon the choice of independent variables in the construction, the way
the construction itself is carried out, or the interpretation we can give to what a
degenerate construction is, has been studied extensively in the literature and the
reader is referred to [12,22–25] or [26] to gain a better understanding of the intricacies
surrounding it.

(iii) True on parts, false on parts statements: As already explained in item i), quite often
the hypothesis variety that is obtained from the algebraization process (via complex
geometry algorithms which avoid the computationally costly decomposition of the
hypothesis variety into irreducible components) can have irreducible, non-degenerate
components of maximal dimension, such that the thesis holds on some of the compo-
nents, while not on others. This situation was thoroughly treated in [27], and gave
rise to a new category of true on parts, false on parts geometric statements.

However, our latest developments want to go further, providing tools that actually
discover geometric theorems, not just prove them. Some of the strategies behind the
algebraic approach to this endeavor (see also [12,24,28]) are briefly described below:

Strategy 1. We want to show the implication {H =⇒ T}. As seen before, we proceed
to check that the ideal 〈H〉+ 〈Tt− 1〉 = 〈1〉 = K[u1, . . . , un, t]. What if we do not get 〈1〉
as response to our query? Let us assume that our CAS system produces an output such
as this:

〈H〉+ 〈Tt− 1〉 = 〈g1(u1, . . . , un, t), . . . , gl(u1, . . . , un, t)〉 =: J.

If we set J′ = J ∩ K[u1, . . . , ud] 6= 0, where the variables {u1, . . . , ud} form a maximal
set of independent variables in 〈H〉, it is easy to see that the points in the variety V(J′) ⊂ Ln

cannot satisfy the thesis condition, and must be excluded from the hypothesis variety in
order to obtain a valid statement, which would take the form

H ∧ (g1 6= 0∨ · · · ∨ gl 6= 0) =⇒ T.

Of course, a new check should be made to confirm the validity and interest of this
new formulation.



Mathematics 2021, 9, 2548 7 of 29

In other words, an algorithm has provided us automatically with the missing hypothesis
that turn our initial statement into a true one. Depending on the form and complexity that
the polynomials gi take, the interpretation of these new conditions in geometric terms can
be more or less affordable. In fact, some of them are closely related to the non-degeneracy
conditions we already mentioned.

Strategy 2. We have obtained from a geometric construction our hypothesis ideal H,
and we are curious about when a certain property holds among some of its elements. If we
express this property through an algebraic relation f (u1, . . . , un) = 0, then we can think of
the ideal

J = 〈H〉+ 〈 f (u1, . . . , un)〉,

and if the variables {u1, . . . , ud} form a maximal set of independent variables in 〈H〉 we
can eliminate the variables {ud+1, . . . , un} to obtain an ideal

J′ = (〈H〉+ 〈 f (u1, . . . , un)〉) ∩ K[u1, . . . , ud]

that provides the conditions that the independent variables must fulfill in the construction
in order to obtain the wanted property.

Strategy 3. Another possibility for implementing discovering tools which combine a nu-
merical and a symbolic approach can proceed as follows: Given a geometric configuration,
proceed firstly to search (by using fast performing numerical computations) for properties
held among the elements of the construction (parallelism, concurrency, collinearity, con-
cyclicity,. . . ) and set them as possible conjectures. In a second stage, these conjectures will
be handled by the algebraic prover to decide whether they can be settled as true statements
or rejected.

GeoGebra makes use of these techniques in several commands, some of them already
implemented in the official releases of GeoGebra (for technical details concerning their
inner workings, see [28,29]):

• Relation(<list of objects>): This higher level command performs two distinct
operations: In the first place it proceeds to make a numerical comparison of the objects,
and outputs an answer concerning geometric properties such as equality/inequal-
ity, parallelism, collinearity, concurrency, etc. Together with this numerical output,
the user finds a “More...” button that, when clicked, gives way to a deeper, symbolic
analysis of the numerical result previously obtained, resorting to the commands that
mention below and proving or rejecting its truthfulness. See Figure 2.

• Prove(<Boolean Expression>): This command is the basic symbolic automatic the-
orem prover in GeoGebra, and its output can be (generally) true, (generally) false or
undefined/? (when GeoGebra cannot decide the question). In order to introduce eas-
ily the Boolean expressions of geometric nature, GeoGebra offers a number of different
commands such as AreParallel(<line>,<line>), AreCollinear(<Point>,<Point>,
<Point>), AreConcyclic(<Point>,<Point>,<Point>,<Point>), etc.

• ProveDetails(<Boolean Expression>): Improved version of the previous com-
mand, offering as output more information on degeneracy conditions whenever
they are easy to translate into a simple statement. See Figure 3.

• LocusEquation(<Arguments>): This command offers the possibility of finding the
algebraic equation for a geometric locus, obtained also by symbolic means. Besides,
the command shows on the graphic window the curve corresponding to the equa-
tion. Among the several options for choosing the arguments, one which will be
useful later to our purposes is LocusEquation(<Boolean expression>, <Point>);
this command will find the equation for the locus of points satisfying the given
Boolean expression.

• Discover(<Point>): This command, one of the latest additions in GeoGebra Dis-
covery, provides as output from a geometric construction a whole set of geometric
statements concerning properties about the lines, segments and other geometric ele-



Mathematics 2021, 9, 2548 8 of 29

ments related to the point provided as argument. The inner workings of the command
follow the idea exposed in Strategies 1 and 3 above.

3. New Tools in GeoGebra Discovery: Handling Geometric Inequalities

In the previous paragraphs we summarily described how automated reasoning tools
have been implemented in GeoGebra for proving geometric equalities. However, many clas-
sic theorems and results in Geometry are not stated in the form of an equality, but through
the use of inequalities—and immediately comes to mind as an essential example the triangle
inequality. However, working with inequalities forces us to enter into the realm of Real
Algebraic Geometry and its corresponding set of instruments, so that the methods based
on polynomials in closed algebraic fields do not suffice to cover this interesting family of
geometric results.

In this respect, we believe that at present GeoGebra is pioneering the implementation
of automated reasoning tools for proving and discovering geometric inequalities in a DGS
environment, and aims at being able to produce proofs in a reasonable timeframe for a
wide collection of results.

These new tools are currently in the development stage, and have not yet been
implemented in official releases of GeoGebra. Nevertheless, they can be accessed through
an experimental version of GeoGebra denominated GeoGebra Discovery ([30]). The (real)
algebraic methods that are at the root of dealing with this new set of geometric propositions
are based on real quantifier elimination and a derived technique denominated Cylindrical
Algebraic Decomposition (CAD). The following is a brief description of the basic ideas
involved when performing a CAD.

We start with a given geometric construction that, in a similar way as in the previous
case when considering geometric equalities, is defined by a collection of polynomial
relations. However, now we introduce two main differences: On the one hand, we restrict
our variables to take values in the field R, so that we focus our attention in the real plane.
On the other hand, we allow them to be only positive or negative, or to hold inequality
relations among them. In this way, we obtain a better, more precise description of the set
of instances available for our Euclidean construction. Therefore, instead of working with
complex varieties, our set of constructions can be represented by a subset of Rn of a type
that generalizes that of a variety, called a semialgebraic set. These sets can be expressed
(see [31]), (Chapter 3) as a union of sets of the form

H = {(x1, . . . , xn) ∈ Rn : hi(x1, . . . , xn) = 0, hj(x1, . . . , xn) > 0,

i = 1, . . . , d, j = d + 1, . . . , m}.

The possibility of working in a real geometry environment allows us to consider
details that escaped our previous complex geometry approach. To see how naturally
semialgebraic sets appear in geometric constructions, let us translate into algebraic form
the statement

Given two points in the plane, take a point P in the interior of the line segment AB.

If we set coordinates A(u1, u2), B(v1, v2) and P(x, y), then the algebraic translation
would give the following semialgebraic set of points (u1, u2, v1, v2, x, y) ∈ R6 defined by
the following equations and inequalities:

H = {(x− u1)(y− v2)− (x− v1)(y− v2) = 0, (x− u1)(v1 − x) > 0}
∪ {(x− u1)(y− v2)− (x− v1)(y− v2) = 0, (y− u2)(v2 − y) > 0}. (4)

Here is where a CAD becomes handy. A CAD is a partition of Rn in semialgebraic
sets. Let us consider first the projections πk : Rn → Rk, (u1, . . . , un) 7→ (u1, . . . , uk),
1 ≤ k ≤ n− 1. Given a set S ⊂ Rn−1, a cylinder is a set of the form S×R, and a stack is a



Mathematics 2021, 9, 2548 9 of 29

partition of a cylinder of the form S×R =
⊔2k+1

j=1 Sj, induced by a sequence of continuous
functions f0 := −∞ < f1 < · · · < fk < +∞ =: fk+1 on S so that:

• If j is odd, then

Sj = {(u1, . . . , un) : (u1, . . . , un−1) ∈ S

∧ f(j−1)/2(u1, . . . , un−1) < un < f(j+1)/2(u1, . . . , un−1)}.

• If j is even, then

Sj = {(u1, . . . , un) : (u1, . . . , un−1) ∈ S ∧ un = f j/2(u1, . . . , un−1)}.

Notice that we have πn−1(Sj) = S for each j. Now we can define a CAD inductively
as follows:

• For n = 1, a CAD of R is a finite partition R =
⊔2k+1

j=1 Sj of the real line in k points
and the k + 1 open intervals which constitute their complement (it can be viewed as a
stack over a point). A point is called a 0-cell and an open interval a 1-cell of the CAD.

• For n > 1, a CAD of Rn is a partition of Rn =
⊔r

i=1(Ti × R) =
⊔r

i=1(
⊔2ki+1

j=1 Sij) in

stacks Ti ×R =
⊔2ki+1

j=1 Sij, whose elements are semialgebraic sets, and such that the

collection {Ti}, i = 1, . . . , r is a CAD of Rn−1 (here we have renamed and reindexed
the elements of the (n− 1)−dimensional CAD to avoid accumulation of subindices).
If Ti is a k-cell, then Sij is either a (k + 1)-cell (if j is odd) or a k-cell (if j is even).
Besides, πn−1(Sij) = Ti and, by the recursive nature of the construction, the collection
of sets {πk(Sij)} (with repeated elements) forms a CAD of Rk.

Now, given a finite set of polynomials P = {pi}, there are algorithms whose output is
a CAD, together with a sample point in each of its elements, and so that for all the points in
each of the elements of the partition and each pi ∈ P only one of the relations p < 0, p = 0,
p > 0 holds. We then say that the CAD is compatible with P (see Figure 4 for an example).

Figure 4. CAD compatible with the polinomial x2 + y2 − 9.

Therefore, if we describe a geometric construction by the hypothesis semialgebraic set
H ⊂ Rn and our thesis is represented by an inequality T = {T(u1, . . . , un) ≥ 0} ⊂ Rn, we
can construct a CAD for the collection of all polynomials defining the hypothesis and thesis
sets. For each set Sij in the resulting partition, either Sij ⊂ H or Sij ∩ H = ∅. Since the
CAD provides also a complete sample of points {qij} for all the pieces Sij and the sign of T
on each piece does not change on each of them, we can verify whether the inequality T ≥ 0
is satisfied on all the sets Sij that constitute H by verifying that T(qij) ≥ 0 for each of them,
and this would mean that our geometric statement is true. Unfortunately, the computational



Mathematics 2021, 9, 2548 10 of 29

complexity of performing a CAD is very high, being doubly exponential on the number
of variables (see [32]), and this renders the process unpractical in complex configurations.
Nonetheless, some clever implementations, combined with other algebraic techniques that
simplify the process, have been already successful, time ago, to automatically prove a wide
number of classic, non-trivial results ([33–35]).

However, we can take advantage of the semialgebraic set H in order to discover new
inequalities as well. Let us assume that we want to investigate the relationship between
two quantities u > 0, v > 0 that have a geometric meaning in our construction, and find
out whether there is a constant p such that an inequality of the form u ≤ pv (or a similar
one) holds. Then we can include {p, u, v} in the space of variables where our Hypothesis
semialgebraic set lies (p as first coordinate), together with the defining polynomials for u
and v and the equation u− pv = 0 that defines p as the ratio of the quantities u, v. Thus,
we obtain a hypothesis set in some Rn which also contains as coordinates the variables
{p, u, v}. Recall that each point of H corresponds to an instance of our geometric construction.
Now, if we proceed to construct a CAD and use it to project H on the coordinate p-axis we
will get a semialgebraic subset in this axis, which is the collection of intervals or points for
which there exists geometric constructions providing the corresponding value p. The CAD
algorithm facilitates the computation of this projection set, and if we obtain, for example,
an interval of the form 0 ≤ p ≤ M, this leads to a proof of the inequality u ≤ Mv. Thus,
this algorithm turns out to be a suitable tool for the discovery of new geometric facts.

A detailed description of the algebraic and geometric aspects of the construction of a
CAD can be found in [36,37]. There are implementations of the corresponding algorithms in
several software programs such as Mathematica, Maple, Reduce or QEPCAD, and GeoGebra
Discovery, in its most recent versions, has incorporated them through its realgeom extension,
see [38]. In its most recent release, GeoGebra Discovery embeds the Tarski/QEPCAD B
program (see [39–41]) to perform these CADs, opening the possibility of proving geometric
inequalities without resorting to external programs. The commands in GeoGebra that put
in action this new set of tools are the following:

• Compare(<Expression, Expression>): This command performs a sequence of tasks
that can be briefly described as follows (see [40]):

1. The first two points of the construction are identified with (0,0) and (1,0). This
reduces the number of variables required, and avoids some degenerate configu-
rations.

2. By using only the equalities defining the hypothesis, there is a first trial to check
for an equality relation between the input expressions. This is handled by the
Giac CAS embedded in GeoGebra.

3. If equality relations are not found, the set of equations in the hypothesis is pro-
cessed, eliminating unnecessary variables and generating a quantified formula.

4. Now, via the Tarski/QEPCAD B software, this quantified formula is converted
into a quantifier-free formula, by means of a CAD algorithm that outputs an
inequality for the quotient of the input expressions.

5. This inequality is translated and displayed into a simple form, easy to understand
by the user.

See Figure 5 for an example of the performance of the Compare command regarding
the statement of Proposition 1.



Mathematics 2021, 9, 2548 11 of 29

the examples given are not supposed to be functional? (lines 327, 
332) 

Well, in these lines, working with the same software, we show an 
example that is totally functional (lines 327 to 330) and one example, 
very similar —apparently— that is not functional at all (lines 330 to 
333).

The whole sentence "Pioneer work in the use of this technique in the 
GeoGebra environment can be attributed to the second author [55], 
who has a nice collection of applications in [46] (see Figure 4)." is a 
simple advertising and unlike an unreviewed material (such [46], 
[47], ...) here for Figure 4 you must provide some math. 

There is a clear mistake here, since by “the second author” we refer to 

Figure 5. Discovering the inequality between the perimeter and the radius of the circumcenter of
a triangle.

• Relation(<list of objects>): As mentioned before, this higher level command
performs two distinct operations ([28]): first, proceeds to make a numerical compari-
son of the objects, and outputs an answer concerning geometric properties, including—
this is the more recent improvement—inequalities, etc. Then the user finds a “More...”
button that, if clicked, starts a deeper, symbolic analysis of the numerical result previ-
ously obtained, proving or rejecting its truthfulness. A detailed example is developed
in Section 5, and shown in Figures 10 and 11.

4. Visualization of Real Curves and the Dynamic Color Scanning Method

Nowadays, computer visualization of mathematical objects is an active area of re-
search, which finds applications in a great variety of disciplines. In particular, the graphic
representation of real algebraic curves (especially in the neighborhood of a singularity)
poses a number of challenges that, although have been faced by numerical and also by
symbolic methods (see [42] and its many references, as well as [43] as a more recent
contribution), still lack accuracy in current computer software implementations, even in
apparently innocent-looking examples.

Example 1. Within GeoGebra, introduce in the input line the command

ImplicitCurve((x-1)^2+y^2),

whose output corresponds to the curve C with equation (x− 1)2 + y2 = 0. It is obvious that the
real part of C contains only the point (1, 0). GeoGebra will display correctly the curve, as shown in
Figure 6a. If we want to visualize now the curve C′ given by (x− 1)4 + y4 = 0, whose real part
coincides with that of C, and introduce

ImplicitCurve((x-1)^4+y^4),

GeoGebra will display nothing on its graphic view, as shown in Figure 6b. These issues can
also affect the command LocusEquation(), since it makes use of ImplicitCurve() to represent
loci graphically.



Mathematics 2021, 9, 2548 12 of 29

(a) (b)

Figure 6. GeoGebra output for the implicit curves (x − 1)2 + y2 = 0 (success, subfigure (a)) and
(x− 1)4 + y4 = 0 (failure, subfigure (b)).

Example 2. Even advanced mathematical software packages such as Maple face similar problems
with its plotting commands. The graphic output of the set of instructions

with(plots);
implicitplot(x^2+y^2-x^3, x=-1..1, y=-1..1);

will miss the real point (0, 0) that belongs to this cubic curve, see Figure 7a. This is due to the fact
that the implicitplot command uses a sample-based method which is not able to detect accurately
isolated points. However, Maple includes other representation options that allow a more precise
output for the case of real algebraic curves, by means of the package algcurves. Executing now

with(algcurves);
plot_real_curve(x^2+y^2-x^3, x, y);

our previous missing point will appear on screen, as shown in Figure 7b.

(a) (b)

Figure 7. Graphic output of Maple for the curve x2 + y2 − x3 = 0 (a) with the implicitplot()
command; (b) with the plot_real_curve() command.

Being the case that important characteristics of algebraic curves can be lost when
making use of these plotting commands, it is interesting to explore other ways to approach
the problem of visualizing (real) algebraic curves. This is the moment to take a closer look
at some of GeoGebra’s special functionalities. Since this program was mainly designed as
a software to be used for the teaching and learning of Mathematics, it incorporates a set
of tools that facilitates the visualization of geometric constructions and their properties,
making them more attractive and comprehensible to students. It turns out that these tools



Mathematics 2021, 9, 2548 13 of 29

can also be employed as a powerful resource to explore diverse problems where complex
geometric configurations arise. In particular, the combined use of the properties Show Trace
and Dynamic color that can be assigned to objects in the graphic window of GeoGebra
creates a scanning tool capable of showing hidden relations among the elements of a given
construction. We refer to this technique as the dynamic color scanning method.

The basic idea behind this method lies in the ability to assign a color to each point
in the plane depending on its position in relation to a geometric construction, element
or property we have to deal with. Whether working with distances and other measures,
with operations performed on a set of these quantities, or with equations corresponding to
geometric loci, the scanning method in GeoGebra is easy to implement, reasonably fast
and reliable, and produces outstanding visual information that can provide insight in a
complex scenario. Pioneer work in the use of this technique in the GeoGebra environment
can be attributed to the second author, who has a nice collection of applications in [44] (see
Figure 8).

(a) (b)

Figure 8. (a) The classic Mandelbrot set, created with the dynamic color scanning method. (b) An
application to investigate the Fermat point of an arbitrary triangle.

Let us describe briefly how this visual method works by showing a simple example
(for those unacquainted with GeoGebra, its reference manual can be found at [45]). Let us
assume that we have three given points A, B, C on the plane, that we can display in the
graphic window of GeoGebra. Let us denote the distance between two points P and Q by
d(P, Q).

Problem 1. Find the geometric locus of points P such that d(P, C) = d(P, A) + d(P, B).

This locus is easy to display with the ImplicitCurve command in GeoGebra, see
Figure 9a. Now, in order to exemplify how to visualize this locus through our dynamic
color scanning method approach, let us start associating some colors to point P(x, y),
as follows. First, we remark that GeoGebra allows to set independently dynamic values of
the three color channels RGB that colorize an object in GeoGebra. The numeric value for
each channel ranges between 0 (no color) and 1 (full color), and for other values z outside
this range GeoGebra applies a periodic pattern given by{

z− bzc, if bzc is even
1− (z− bzc), if bzc is odd.

In particular, if we set the values (R,G,B) to integers of the form (even, even, even)
we get black, and by setting them to integers (odd, odd, odd) we obtain white. Besides,
if all three channels have equal values, a color in the scale of greys is produced. Now,
for instance, let us set dynamic values for the point P as follows:

Red : c/s
Green : 1−abs ( s−c )



Mathematics 2021, 9, 2548 14 of 29

Blue : s/c ,

where c = Distance(P,C) and s = Distance(P,A)+Distance(P,B). Observe that we will
get for the point P the white color only when c = s, since values assigned to red and blue
channels are positive and mutually inverse, and all three channels will give odd numbers
(in fact, 1) only in this case.

Now, if we activate the trace for the point P and drag it, after covering the region we
are interested in, we obtain the color scanning of the area, and we will have a visualization
of the locus (the set of points white-colored) we are looking for. It is interesting to make
here several remarks concerning the output image:

• The periodic patterns that frequently arise in form of concentric rings of similar colors
are due to the periodic behavior of the dynamic colors when the values introduced
in the RGB channels move outside the [0, 1] range, as previously mentioned (see
Figure 9b).

• A way to restrict the values for the dynamic color channels in the range [0, 1] is
obtained by using exponential expressions of the form

Red : e^(− abs ( f ( P ) ) )
Green : e^(− abs ( g ( P ) ) )
Blue : e^(− abs ( h ( P ) ) ) ,

so that only when simultaneously the functions f , g, h, depending on point P, are
equal to 0 the white color will be assigned to P. In our example, by assigning to the
color channels the values

Red : e^(− abs (1 − c/s ) )
Green : e^(− abs ( s−c ) )
Blue : e^(− abs (1 − s/c ) ) ,

we obtain Figure 9c.
Besides, if we substitute in a given RGB channel, for instance the red one, the ex-
pression in the exponent abs( f (P)) by (abs(k f (P)) − floor(k abs( f (P))), where k
is a convenient positive constant, we get the mantissa of k abs( f (P)), which drops
abruptly to zero when f (P) crosses integer values, producing distinct lines because of
the sudden color change in the red channel. This trick leads to the appearance of level
curves connecting points P with the same f (P) value, which will be more densely
distributed by choosing a greater value for the constant k. We will make use of this
technique later in Section 6.1.

• Since we have three different channels that can hold independent values, by playing
wisely with them, we have at our disposal up to three different properties to visualize
in our scanning method. An illustration of how to take advantage of this feature is
shown in Figure 8b, where an investigation on the Fermat’s Point is carried out (see
the section on “Escáner del Punto Fermat” in [44], for details on the construction).

Now, to improve the output of the process and avoid the cumbersome dragging of
point P all over the graphic view we can benefit from other resources included in GeoGebra
and proceed as follows:

1. Set a rectangular region to be scanned. Let us say it has as upper left corner the point
(x0, y0), and dimensions w× h.

2. Shrink the size of the radius for the point P to its minimum size.
3. Create a slider t that will be used as the x-coordinate of P, and runs from x0 to x0 + w.
4. Set the coordinates of P to (t, y0) and rename the point to A1. This trick allows us to

automatically assign the point P to the cell A1 of the GeoGebra spreadsheet. Now
we can create a list of points Ai, 1 ≤ i ≤ n, by taking advantage of the spreadsheet
features, starting first by adding the point A2 = A1− (0, ε), with the same properties
as A1, and dragging downwards (as it is usually done when working with spread-
sheets) the cell A2. This column of points (all of them inheriting the properties we set
up for A1) translates in the graphic window into a scanning vertical segment, which



Mathematics 2021, 9, 2548 15 of 29

will sweep the region as the slider t runs through its defined range. A recommended
value for ε is 0.02 in order to obtain a good quality of the scanning image. Therefore,
for covering our rectangular region of height h we should create around n ≈ 50 h
points.

(a) (b) (c)

Figure 9. Locus of P such that d(P, A) + d(P, B) = d(P, C), displayed (a) with the traditional
GeoGebra tools, (b,c) with the dynamic color scanning method.

We will see below how this method proves useful when trying to understand geomet-
ric configurations that lead to demanding computational tasks that cannot be handled by
the GeoGebra CAS. Other variations of these dynamic coloring methods in GeoGebra that
show their flexibility and visualization potential can be found in [46] (see also [44,47]).

Remark 2. Similar visualization techniques to those presented here can be also employed in other
DGS programs such as Cinderella [48] and its companion open project CindyJS [49], some of them
inspired in Losada’s scanning method for GeoGebra (see for instance [50]).

5. A Case Study: Relation between the Perimeter and Circumradius of a Triangle

Now we center our attention on Proposition 1, and let us see how GeoGebra can help
us discover this proposition automatically, without having to provide any clue whatsoever
as an input, apart from the basic construction required to set the scenario for our investiga-
tion.

We start by constructing the three vertices A, B, C of a triangle. Without loss of
generality, we can assume A and B to be the points A(0, 0) and B(1, 0). The third vertex C
has free coordinates (x, y). Now we draw the segments BC, CA and AB, with respective
lengths a, b, c, and the perpendicular bisectors l and m to CA and AB respectively. Let us
denote by D(d1, d2) the point of intersection of the two previous bisectors. The segment
AD of length R is the circumradius of the triangle4ABC. Our construction is all set. Now
we introduce in the GeoGebra input line the command Relation(a + b + c, R) and we
obtain (see Figure 10) an initial, numerical output indicating that the quantities a + b + c
and R do not coincide. Not very informative indeed, but if we press the “More...” button
(see Figure 11) the realgeom extension enters in action and quickly shows that the relation
a + b + c ≤ 3

√
3 R holds.



Mathematics 2021, 9, 2548 16 of 29

Figure 10. Numerical output of the Relation tool.

Figure 11. Symbolic output of the Relation tool.

However, Proposition 1 not only asserts that this inequality holds. It also states
that the corresponding equality a + b + c = 3

√
3 R is true if and only if the triangle

4ABC is equilateral. How can we prove this with our set of tools? Well, for this task the
command LocusEquation(<Boolean Condition>, <Point>) becomes handy, since if we
ask GeoGebra to provide us with the geometric locus of the points in the plane satisfying
the equality relation a + b + c = 3

√
3 R we should obtain an algebraic curve giving us

information on the set of points we are looking for. Were Proposition 1 correct, this locus
should reduce to the points C1(

1
2 ,
√

3
2 ) and C2(

1
2 ,
√

3
2 ), which are the only ones producing

equilateral triangles together with A and B.
Having therefore a clear strategy to settle down the equality part of our statement, we

type in the input bar LocusEquation(a + b + c == 3
√

3 R, C), obtaining the following
equation for this geometric locus:

P(x, y) := 531441x16 + 3621672x14y2 + 10657980x12y4 + 17653464x10y6

+ 17955270x8y8 + 11448216x6y10 + 4452732x4y12 + 962280x2y14

+ 88209y16 − 4251528x15 − 25351704x13y2 − 63947880x11y4



Mathematics 2021, 9, 2548 17 of 29

− 88267320x9y6 − 71821080x7y8 − 34344648x5y10 − 8905464x3y12

− 962280x y14 + 14880348x14 + 77551020x12y2 + 167328828x10y4

+ 191561004x8y6 + 123219252x6y8 + 42802020x4y10 + 6689844x2y12

+ 204228y14 − 29760696x13 − 135733968x11y2 − 250455240x9y4

− 236640096x7y6 − 118283976x5y8 − 28362960x3y10 − 2237112x y12 (5)

+ 37200870x12 + 149197140x10y2 + 235946682x8y4 + 183225240x6y6

+ 69737274x4y8 + 10694484x2y10 + 236134y12 − 29760696x11

− 105973272x9y2 − 144481968x7y4 − 92158128x5y6 − 26125848x3y8

− 2237112x y10 + 14880348x10 + 47790324x8y2 + 56867832x6y4

+ 30035016x4y6 + 6281388x2y8 + 204228y10 − 4251528x9

− 12597120x7y2 − 13401936x5y4 − 6018624x3y6 − 962280x y8

+ 531441x8 + 1495908x6y2 + 1485702x4y4 + 609444x2y6

+ 88209y8 = 0

The degree of this polynomial equation is 16 and, unfortunately, GeoGebra is not
capable of producing any points of the corresponding curve in the graphical window (see
Figure 12, where all elements apart from the locus have been hidden to allow a better
visualization). Our strategy fails! In principle, it could be the case that the curve had no
real points, but a quick inspection of the polynomial P(x, y) is enough to see that at least
the point (0, 0) must belong to it. Therefore, something is going wrong here... It is time to
look for another way to find out what is the real aspect of this curve.

Figure 12. The algebraic curve P(x, y) = 0 does not appear on-screen.

6. Combining Visual and Symbolic Strategies to Overcome Difficulties
6.1. The Visual Approach Using the Dynamic Color Scanning Method

After the difficulties that we have encountered when trying to study the algebraic
curve P(x, y) = 0 by means of the LocusEquation() command, let us approach the
problem from a more visual strategy, by using the dynamic color scanning method de-
scribed in Section 4. Let us choose as scanning area the rectangle R with two oppo-
site vertices located at (−2,−2) and (3, 2), which contains points A, B of our construc-
tion. We have to assign dynamic values to the three RGB color channels of the scanning
points, and these values should depend on some kind of measure of the “distance” of
the point to the curve P(x, y) = 0. As an initial choice, we could just choose the values



Mathematics 2021, 9, 2548 18 of 29

(e−|P(x,y)|, e−|P(x,y)|, e−|P(x,y)|) for each point (x, y), but the high values that the polynomial
P attains on the considered region (for instance, P(2, 2) = 448988778496) produces undesir-
able effects in the visualization process, so that it is better to adjust these values in order to
obtain a better display. A good choice to get a neat output is obtained by assigning to each
point Ci of the scanning segment the following values (see Figures 13 and 14):

(a) (b)

(c) (d)

Figure 13. (a) Setting up the dynamic color scanner. (b,c) Basic parameters of the scanning points.
(d) Parameter values for the RGB channels.

Figure 14. Output after a dynamic color scanning of the plane for the locus P(x, y) = 0.

Red : e ^( −( abs ( k Bi ) − f l o o r ( abs ( k Bi ) ) ) )
Green : e^(− abs ( Bi ) )



Mathematics 2021, 9, 2548 19 of 29

Blue : e ^( −( abs ( Bi ) − f l o o r ( abs ( Bi ) ) ) ) ,

Here, recommended values for the values k, Bi are k = 10 and Bi = log(1 + log(1 +
abs(P(Ci)))).

As already seen, the “curve” of white points in the scanned region would represent the
part of the geometric locus a + b + c = 3

√
3 R contained in R. However, instead of a curve

we perceive four whitened areas: two of them, more visible, with centers located around
(0, 0) and (1, 0), and two smaller ones (these ones are trickier to spot, and the technique
described in Section 4 for producing isolines, applied to the red and blue channels, helps
detecting them) with centers lying on the line x = 1

2 . This leads us to state the following
conjecture:

Conjecture 1. The number of real points of the curve P(x, y) = 0 is finite and equal to four.
Besides, two of them have as x-coordinate the value x = 1

2 , while the two others have x-coordinates
x = 0 and x = 1 respectively.

So, the dynamic color scanning method has helped us approach the solution to our
question on the conditions that correspond to the equality case in Proposition 1. Of course,
this cannot be considered a formal proof, but the information that we have obtained
from this visual exploration allows us to return to a symbolic approach, this time with a
conjecture in mind, and with Maple and its algebraic toolkit as auxiliary assistant.

6.2. The Symbolic Approach Using Maple Commands

Thanks to the previous section we now have a better intuition about the geometric
locus corresponding to the equality a + b + c = 3

√
3 R, and we can try to resort to more

powerful tools in order to definitely settle the question that has resisted our analysis so far.
From now on, we will use Maple and a variety of its available tools to perform a thorough
algebraic study of the situation in order to completely elucidate the set of real points in
P(x, y) = 0.

In the first place, since we already have some familiarity with CADs, we will use
higher level commands implemented in recent versions of Maple to quickly settle down
Proposition 1. To achieve this, we need the RegularChains package and its commands to
perform CADs:

> with ( RegularChains ) :
with ( ChainTools ) :
with ( SemiAlgebraicSetTools ) :
R:= PolynomialRing ( [ y , x ] )
cad := CylindricalAlgebraicDecompose ( P , R , method = recurs ive ,
output=piecewise )



Mathematics 2021, 9, 2548 20 of 29

Here, P represents the polynomial detailed in the precedent Equation (5). Executing
this group of instructions we get

cad :=



1 x < 0
1 y < 0
1 y = 0
1 y > 0

x = 0

1 0 < x and x < 1/2

1 y < −1/2
√

3
1 y = −1/2

√
3

1 and(y > −1/2
√

3, y < 1/2
√

3)
1 y = 1/2

√
3

1 y > 1/2
√

3

x = 1/2

1 1/2 < x and x < 1
1 y < 0
1 y = 0
1 y > 0

x = 1

1 1 < x

,

which graphically corresponds to the CAD shown in Figure 15.

Figure 15. CAD compatible with the set of solutions of P(x, y) = 0.

This confirms at once our Conjecture 1, as well as the equality case in Proposition 1,
and we are done.

However... what kind of symbolic calculations lie behind performing a CAD com-
patible with a set of given polynomials? In order to gain a better understanding of how
Maple is capable of completing these tasks related to working with polynomials in real
coefficients, in the sequel, we proceed to give a more guided, step-by-step treatment of
the problem, by using lower level Maple commands that can also be translated to other
software packages such as the Xcas/Giac environment.

We start by translating into algebraic form our initial construction (see Table 1).



Mathematics 2021, 9, 2548 21 of 29

Table 1. Algebraic translation of geometric construction in GeoGebra.

Construction Element Variables Polynomial Equation

Points A(0, 0), B(0, 0), C(x, y) {x, y}
Perpendicular Bisector l to AB {u} u− 1

2 = 0
Perpendicular Bisector m to BC {x, y, u, v} (x− 1)(u− x+1

2 ) + y(v− y
2 ) = 0

Intersection of l and m is D(u, v) {u, v}
Segment h = CD {x, y, u, v, h} h2 − (x− u)2 − (y− v)2 = 0
Segment a = BC {x, y, a} a2 − (x− 1)2 − y2 = 0
Segment b = CA {x, y, b} b2 − x2 − y2 = 0
Segment c = AB {x, y, c} c2 − 1 = 0
Square Root of 3 {r} r2 − 3 = 0
Locus Equation {a, b, c, h, r} a + b + c− 3 · r · h=0

Notice that we take care of expressing all our relations concerning distances and other
measures in polynomial form. This allows the use of the algebraic tools implemented in
Maple. We define now the ideal containing our hypothesis, which we denote by Hypo:

> r e s t a r t : with ( Polynomial Ideals ) : Hypo:= PolynomialIdeal ( u−(1/2) ,
( x − 1 ) * ( u − ( ( x +1)/2))+ y * ( v−(y / 2 ) ) , h^2−(x−u)^2 −(y−v )^2 ,
a^2−(x−1)^2−y^2 ,b^2−x^2−y^2 , c ^2 −1 , v a r i a b l e s ={x , y , u , v , h , a , b , c } ) ;

Hypo := 〈2u− 1, (x− 1)
(

u− x
2
− 1

2

)
+ y
(

v− y
2

)
,

a2 − (x− 1)2 − y2, h2 − (x− u)2 − (y− v)2, c2 − 1, b2 − x2 − y2〉

The Hilbert dimension of this ideal gives us information on the number of maximal
independent variables, giving us the degrees of freedom of the construction:

> HilbertDimension (Hypo ) ; E l i m i n a t i o n I d e a l (Hypo , { x , y } ) ;

2

〈0〉

Therefore, we can consider as free variables the coordinates x, y of the point C, since
we can drag this point on the plane and its position determines the whole construction.
Now we introduce the polynomial related to the locus equation (together with the relation
defining

√
3) to obtain ideal T, which should decrease its Hilbert dimension by one:

> T:= PolynomialIdeal ( u − ( 1 / 2 ) , ( x − 1 ) * ( u − ( ( x +1)/2))+ y * ( v−(y / 2 ) ) ,
h^2−(x−u)^2 −(y−v )^2 , a^2−(x−1)^2−y^2 ,b^2−x^2−y^2 , c ^2 −1 , r ^2 −3 ,
a+b+c −3* r *h , v a r i a b l e s ={x , y , u , v , h , a , b , c , r } ) ; HilbertDimension ( T ) ;

T := 〈2u− 1, (x− 1)
(

u− x
2
− 1

2

)
+ y
(

v− y
2

)
, a2 − (x− 1)2 − y2,

h2 − (x− u)2 − (y− v)2, c2 − 1, r2 − 3, b2 − x2 − y2,−3rh + a + b + c〉

1

Therefore, the variables {x, y} are not free anymore, and a polynomial relation among
them must hold. If we type now

> P:= E l i m i n a t i o n I d e a l ( T , { x , y } ) ;

we obtain the same polynomial P(x, y) appearing in Equation (5) (with a different order of
terms), confirming the good job done by GeoGebra when computing the locus equation
for the equality a + b + c = 3

√
3 R. Our intuition, reinforced through our visualization



Mathematics 2021, 9, 2548 22 of 29

approach in Section 6.1, invites us to think that this algebraic curve should have only two
real points (apart from degenerate cases that already have been considered). Therefore,
our mission consists now in finding all the real points belonging to the curve P(x, y) = 0.
Since Maple also includes graphic tools to plot real algebraic curves, in the same spirit as
we tried with GeoGebra we can see whether Maple outputs (see Figure 16) successfully the
real set of points for this curve:

> with ( a lgcurves ) : p l o t _ r e a l _ c u r v e ( P ( x , y ) , x , y ) ;

Figure 16. Maple output for locus equation P(x, y) = 0.

Indeed, it seems that this time the picture looks complete: The graphic output shows
four points that certainly could correspond to the degenerate cases C1(0, 0) and C2(1, 0),
together with the elusive points C3(

1
2 ,
√

3
2 ) ≈ (0.5, 0.866) and C4(

1
2 ,−

√
3

2 ) ≈ (0.5,−0.866),
which correspond to the two possible equilateral triangle configurations. We are getting
closer to our goal, but we have learned that, even though the visual approach has provided
us with clues to settle the problem, at the same time it can be an inaccurate technique.

Now, in order to verify rigorously that these are the only real points of our curve, we
will proceed as follows:

Step 1: Check that P(x, y) = 0 for x ∈ {0, 1
2 , 1} has real solutions in y, and determine them

all.

Step 2: Check that P(x, y) = 0 for x /∈ {0, 1
2 , 1} has not real solutions in y.

These two facts will lead to a full determination of the set of real points in our
geometric locus.

Step 1: We first set x = 0 and compute P(0, y), factorizing the result.

> s i mp l i f y ( subs ( x =0 ,P ( x , y ) ) ) ; f a c t o r ( % ) ;
88209y16 + 204228y14 + 236134y12 + 204228y10 + 88209y8

y8(297y4 + 432y3 + 658y2 + 432y + 297
)(

297y4 − 432y3 + 658y2 − 432y + 297
)

From the first factor it follows that there exists the real solution y = 0, and to exclude
any other possibilities it is enough to count real roots by using the Sturm sequence of the
second factor (since the third factor has symmetric real roots, being obtained from the
second through the substitution y→ −y).

> sturmseq ( 2 9 7 * y^4 + 432*y^3 + 658*y^2 + 432*y + 297 , y ) ;
sturm (% ,y , − i n f i n i t y , i n f i n i t y ) ;



Mathematics 2021, 9, 2548 23 of 29

[
y4 + 16

11 y3 + 658
297 y2 + 16

11 y + 1, y3 + 12
11 y2 + 329

297 y + 4
11 ,−y2 − 2248

2323 y− 2835
2323 , y− 30348

32993 , 1
]

0For the value x = 1, we proceed similarly and obtain

> s i mp l i f y ( subs ( x =1 ,P ( x , y ) ) ) ;

88209y16 + 204228y14 + 236134y12 + 204228y10 + 88209y8,

Since this polynomial coincides with the one in case x = 0, we again have that y = 0
is the only real root for x = 1.

Finally, let us study the case x = 1
2 . Now,

> s i mp l i fy ( subs ( x=1/2 ,P ( x , y ) ) ) ;(
432y4 + 152y2 + 27

)2(1936y4 + 744y2 + 81
)(

4y2 − 3
)2

65536
The last factor in this expression has roots y = ±

√
3

2 , while the others do not produce
further real roots:

> sturmseq (19 36 * y^4 + 744*y^2 + 81 , y ) ;
sturm (% ,y , − i n f i n i t y , i n f i n i t y ) ;[

y4 + 93
242 y2 + 81

1936 , y3 + 93
484 y,−y2 − 27

124 , y, 1
]

0
> sturmseq ( 4 3 2 * y^4 + 152*y^2 + 27 , y ) ;
sturm (% ,y , − i n f i n i t y , i n f i n i t y ) ;[

y4 + 19
54 y2 + 1

16 , y3 + 19
108 y,−y2 − 27

76 , y, 1
]

0

Therefore, after we finish Step 1 we have checked that the curve contains the real
points A(0, 0), B(1, 0), C1(

1
2 ,
√

3
2 ) and C2(

1
2 ,
√

3
2 ). However... Are these the only real points?

Step 1: We start by considering again the polynomial P(x, y), but now displayed as a
polynomial in (R[x])[y], that is, as a polynomial in the variable y with coefficients in
the domain R[x]:

> P ( y ) : = c o l l e c t ( P ( x , y ) , y ) ;
P(y) := 88209y16 + (962280x2 − 962280x + 204228)y14 + (4452732x4 − 8905464x3

+ 6689844x2 − 2237112x + 236134)y12 + (11448216x6 − 34344648x5 + 42802020x4

− 28362960x3 + 10694484x2 − 2237112x + 204228)y10 + (17955270x8 − 71821080x7

+ 123219252x6 − 118283976x5 + 69737274x4 − 26125848x3 + 6281388x2 − 962280 x

+ 88209)y8 + (17653464x10 − 88267320x9 + 191561004x8 − 236640096x7

+ 183225240x6 − 92158128x5 + 30035016x4 − 6018624x3 + 609444x2)y6

+ (10657980x12 − 63947880x11 + 167328828x10 − 250455240x9 + 235946682x8

− 144481968x7 + 56867832x6 − 13401936x5 + 1485702x4)y4 + (3621672x14

− 25351704x13 + 77551020x12 − 135733968x11 + 149197140x10 − 105973272x9

+ 47790324x8 − 12597120x7 + 1495908x6)y2 + 531441x16 − 4251528x15

+ 14880348x14 − 29760696x13 + 37200870x12 − 29760696x11 + 14880348x10

− 4251528x9 + 531441x8

Now we consider the discriminant of P(y), i.e., the following poynomial in the variable x.



Mathematics 2021, 9, 2548 24 of 29

> F ( x ) : = discr im ( P ( y ) , y ) ;

F(x) := 280067312748789736985963225604373352510564033142263971832537392349

415195652578325220678822080410345331615448815562735192521704455798784x72

(x8 − 8x7 + 28x6 − 56x5 + 70x4 − 56x3 + 28x2 − 8x + 1)

(3632485367808x56 − 159829356183552x55 + 3577163194302464x54

− 54164413774561280x53 + 622443578726023168x52 − 5773582936701927424x51

+ 44897775920459808768x50 − 300247901712809459712x49

+ 1758114864489495724032x48 − 9135260149961008349184x47

+ 42551623871336184741888x46 − 179090221864084504117248x45

+ 685344164455520353296384x44 − 2396629632755743126634496x43

+ 7689454585845088640053248x42 − 22708981881839500024713216x41

+ 61891840837200517187347200x40 − 155990296354557949507587072x39

+ 364158999313469028710248320x38 − 788406917587255927405708416x37

+ 1584428222011265587900156720x36 − 2957569256832435823271357152x35

+ 5129945603504315688350052152x34 − 8269776590784139495965972872x33

+ 12390543211614717631909801257x32 − 17252401206283398073500981408x31

+ 22318296998768405837652400560x30 − 26814078429820941216636836640x29

+ 29905088583572672158777405176x28 − 30942227685324623761835121056x27

+ 29681091982410789831813469808x26 − 26374203265941990164579799232x25

+ 21689407819853155907386334332x24 − 16490199124372028963640724512x23

+ 11576884004652233065735193904x22 − 7494649995207776536812979488x21

+ 4467144551988536607861767208x20 − 2447145125704270768169593824x19

+ 1229604833215458358583229216x18 − 565390666420461765033763728x17

+ 237282486568592921740430646x16 − 90615812927915371616847840x15

+ 31379801331933253034228112x14 − 9814109135651240497580640x13

+ 2759065273605140504442696x12 − 693397355113836911985120x11

+ 154761785959667058874512x10 − 30436116451158737790592x9

+ 5223919673230693179772x8 − 773249983840487534432x7

+ 97228055482879826960x6 − 10181010035441972448x5

+ 863987640180241896x4 − 57116611454625216x3 + 2762134609728168x2

− 87043594688424x + 1344301719849)2

The output is a factorized polynomial F(x) in R[x] that we can express in the form
F(x) = F0(x) · F1(x) · F2

2 (x). The first factor F0(x) is a monomial containing x72, which
gives the real root x = 0. The two other factors F1(x), F2(x) (one of them squared) need a
more careful examination. Let us see first whether they can be further factorized.

> f a c t o r ( F_1 ) ; f a c t o r ( F_2 ) ;
(x− 1)8

(221709312x10 − 1108546560x9 + 5547202304x8 − 15537529856x7 + 23360155968x6

−20355008960x5 + 10731606224x4 − 3448222560x3 + 658900764x2 − 70266636x

+3485889)(4x2 + 23)2(4x2 − 8x + 27)2(2x− 1)6(x− 1)32



Mathematics 2021, 9, 2548 25 of 29

Now it is clear that F1(x) = 0 has only one real solution x = 1 (with multiplicity 8).
With respect to F2(x), the factors 4x2 + 23 and 4x2 − 8x + 27 do not contribute with real
roots, and the factors 2x− 1 and x− 1 contribute with real solutions x = 1

2 and x = 1 (with
multiplicities 6 and 32 respectively). Finally, we study the Sturm sequence for the larger
factor in order to see whether we are missing other real roots of F2(x).

> sturmseq (221709312* x^10 − 1108546560* x^9 + 5547202304* x^8
− 15537529856* x^7 + 23360155968* x^6 − 20355008960* x^5
+ 10731606224* x^4 − 3448222560* x^3 + 658900764* x^2
− 70266636* x + 3485889 , x ) ;
sturm (% ,x , − i n f i n i t y , i n f i n i t y ) ;[

x10 − 5x9 +
21668759
866052

x8 − 15173369
216513

x7 +
121667479

1154736
x6 − 28913365

314928
x5

+
670725389
13856832

x4 − 11972995
769824

x3 +
6100933
2052864

x2 − 59147
186624

x +
11737

746496
, x9 − 9

2
x8

+
21668759
1082565

x7 − 106213583
2165130

x6 +
121667479

1924560
x5 − 28913365

629856
x4 +

670725389
34642080

x3

−2394599
513216

x2 +
6100933

10264320
x− 59147

1866240
,−x8 + 4x7 − 152575271

23851348
x6 +

123806941
23851348

x5

−105485273
47702696

x4 +
5223331
11925674

x3 − 6179517
381621568

x2 − 1656315
381621568

x +
68607

1526486272
,

−x7 +
7
2

x6 − 6032902658003487
1200060777167108

x5 +
9163449689593045
2400121554334216

x4 − 7901689078731841
4800243108668432

x3

+
3852119358162855
9600486217336864

x2 − 246472468139943
4800243108668432

x +
52410697894269

19200972434673728
,−x6 + 3x5

−1923113575493489063067
544181504190477281099

x4 +
1125319630034591720639
544181504190477281099

x3

−2699431145391007808109
4353452033523818248792

x2 +
374878642014550049949
4353452033523818248792

x

− 129123207926862901389
34827616268190545990336

,−x5 +
5
2

x4 − 6120084968285261526685869
5247608252952953776114636

x3

− 7877786359908984300515573
10495216505905907552229272

x2 +
297440786451944785973148517
440799093248048117193629424

x

−113685261871877652900325591
881598186496096234387258848

, x4 − 2x3 +
83459519425974095718301535996311
55852716316393303993363363418712

x2

−27606803109580791724938172577599
55852716316393303993363363418712

x +
6814525055230976067861308675045

111705432632786607986726726837424
,

−x3 +
3
2

x2 − 264697672012697346416360283393844501
357631291633235791535031047332757050

x

+
21470506549019862662211189931866494
178815645816617895767515523666378525

,−x2 + x

−27892930064141325504042418797332472427
11908197738863253638405327183317787758

, x− 1
2

,−1
]

0

Therefore, no new real roots appear, and we conclude that the only real roots of the
discriminant F(x) are 0, 1

2 and 1. These three values split R into four intervals and on their
interiors F(x) does not vanish. Now the following result concerning discriminants becomes
handy (see for example [51], (pp. 320–321) for a proof of this fact):

Proposition 2. Between consecutive roots of the discriminant F(x) of a bivariate polynomial
p(x, y) (regarded as a function of y alone), the number of real zeros of p(x, y) is independent of x.



Mathematics 2021, 9, 2548 26 of 29

Therefore, we can use again Sturm’s sequences to check the number of real roots for
the variable y for specifying particular values of x lying in each of the aforementioned
intervals, let us say x1 = −1, x2 = 1

3 , x3 = 2
3 and x4 = 2.

> subs ( x=−1 ,P ( y ) ) ; sturmseq (% ,y ) : sturm (% ,y , − i n f i n i t y , i n f i n i t y ) ;

88209y16 + 2128788y14 + 22521286y12 + 130093668y10 + 434474577y8

+ 846168336y6 + 944574048y4 + 559312128y2 + 136048896

0
> subs ( x=1/3 ,P ( y ) ) ; sturmseq (% ,y ) : sturm (% ,y , − i n f i n i t y , i n f i n i t y ) ;

88209y16 − 9612y14 − 41114y12 − 892y10 +
293419

27
y8

+
1093808

243
y6 +

630112
729

y4 +
20224

243
y2 +

256
81

0
> subs ( x=2/3 ,P ( y ) ) ; sturmseq (% ,y ) : sturm (% ,y , − i n f i n i t y , i n f i n i t y ) ;

88209y16 − 9612y14 − 41114y12 − 892y10 +
293419

27
y8

+
1093808

243
y6 +

630112
729

y4 +
20224

243
y2 +

256
81

0
> subs ( x =2 ,P ( y ) ) ; sturmseq (% ,y ) : sturm (% ,y , − i n f i n i t y , i n f i n i t y ) ;

88209y16 + 2128788y14 + 22521286y12 + 130093668y10 + 434474577y8

+ 846168336y6 + 944574048y4 + 559312128y2 + 136048896

0Therefore, for any x0 outside the finite set {0, 1
2 , 1} there are no real solutions for

P(x0, y) = 0, and we can conclude that A(0, 0), B(1, 0), C1(
1
2 ,
√

3
2 ) and C2(

1
2 ,−

√
3

2 ) are the
only real points of the curve P(x, y) = 0, and this concludes our scaffolded, computational-
based proof of Proposition 1.

Certainly, there are still people loving human-made proofs. If the reader is among
them and is curious about a more classical approach, see [10] or [52].

7. Conclusions and Further Research

We have seen that the current graphic and symbolic tools available in diverse math-
ematical software packages, due to high complexity issues, present some limitations for
visualizing appropriately geometric objects such as loci defined by algebraic curves. In or-
der to gain some insight on the geometry of these objects we have resorted to an alternative
visualization technique, the dynamic color scanning method, which takes advantage of
the possibility of working with dynamic colors in the GeoGebra graphic view. The visual
guidance provided by this method allows us to approach the extreme case of a geometric
inequality more effectively, this time using symbolic tools available in external software
such as Maple.

The authors consider that future releases of GeoGebra could benefit from the inclusion
of new commands that:

(i) perform straightforwardly a dynamic color scanning, avoiding the setup process
which is needed at present and improving its performance;

(ii) utilize the Giac and Tarski/QEPCAD embedded systems to increase the power of the
GART’s tools present in GeoGebra, rendering unnecessary to make use of external
software to visualize and study certain geometric problems (see for instance [53])
which can involve equalities or inequalities in their formulation.



Mathematics 2021, 9, 2548 27 of 29

We hope to accomplish these tasks in a near future, with the help of the many
colleagues already involved in the development of the GeoGebra automated reasoning
tools project.

Author Contributions: Writing—original draft, T.R., R.L., Z.K. and C.U. All authors contributed
equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: First and third authors were partially supported by a grant PID2020-113192GB-I00 (Mathe-
matical Visualization: Foundations, Algorithms and Applications) from the Spanish MICINN.

Acknowledgments: Thanks to Laureano González-Vega for some clever hints concerning Section 6.2.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CAD Cylindric Algebraic Decomposition
CAS Computer Algebra System
DGS Dynamic Geometry Software
GART Geometry Automated Reasoning Tool
GATP Geometry Automated Theorem Prover

References
1. Wu, W.T. On the decision problem and the mechanization of theorem-proving in elementary geometry. Sci. Sin. 1978, 21, 159–172.

Reprinted in: Automated Theorem Proving: After 25 Years; Bledsoe, W.W., Loveland, D.W., Eds.; Contemporary Mathematics, 29;
AMS: Providence, RI, USA, 1984; pp. 213–234.

2. Quaresma, P. Thousands of Geometric problems for geometric Theorem Provers (TGTP). In Automated Deduction in Geometry,
8th International Workshop, ADG 2010; Schreck, P., Narboux, J., Richter-Gebert, J., Eds.; LNAI 6877; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 169–181.

3. Chou, S.C. An Introduction to Wu’s Method for Mechanical Theorem Proving in Geometry. J. Autom. Reason. 1988, 4, 237–267.
[CrossRef]

4. Buchberger, B. Introduction to Gröbner Bases. In Gröbner Bases and Applications; Buchberger, B., Winkler, F., Eds.; LMSLN 251;
Cambridge University Press: Cambridge, UK, 1998; pp. 3–31.

5. Kapur, D. Using Gröbner bases to reason about geometry problems. J. Symb. Comput. 1986, 2, 399–408. [CrossRef]
6. About GeoGebra. Available online: https://www.geogebra.org/m/pR5DME5S#material/uy93nfzr (accessed on 21 August

2021).
7. Cevikbas, M.; Kaiser, G. A Systematic Review on Task Design in Dynamic and Interactive Mathematics Learning Environments

(DIMLEs). Mathematics 2021, 9, 399. [CrossRef]
8. Ondes, R.N. Research trends in dynamic geometry software: A content analysis from 2005 to 2021. World J. Educ. Technol. Curr.

Issues 2021, 13, 236–260. [CrossRef]
9. Kovács, Z.; Montag, A.; Vajda, R. On Euler’s inequality and automated reasoning with dynamic geometry. arXiv 2020,

arXiv:1708.02993.
10. Bottema, O.; Djordjević, R.Ž.; Janić, R.R.; Mitrinović, D.S.; Vasić, P.M. Geometric Inequalities, 1st ed.; Wolters-Noordhoff Publishing:

Groningen, Germany, 1969.
11. Hohenwarter, M.; Kovács, Z.; Recio, T. Using GeoGebra automated reasoning tools to explore geometric statements and

conjectures. In Proof Technology in Mathematics Research and Teaching; Hanna, G., de Villiers, M., Reid, D., Eds.; Mathematics
Education in the Digital Era 14; Springer: Berlin/Heidelberg, Germany, 2019; pp. 215–236.

12. Recio, T.; Vélez, M.P. Automatic Discovery of Theorems in Elementary Geometry. J. Autom. Reason. 1999, 23, 63–82. [CrossRef]
13. Botana, F.; Kovács, Z.; Recio, T. A Mechanical Geometer. Math.Comput. Sci. 2020. doi: 10.1007/s11786-020-00497-7. [CrossRef]
14. De Graeve, R.; Parisse, B. Giac/Xcas (v. 1.7.0). 2021. Available online: https://www-fourier.ujf-grenoble.fr/~parisse/giac.html

(accessed on 29 July 2021).
15. Kovács, Z.; Parisse, B. Giac and GeoGebra—Improved Gröbner Basis Computations. In Computer Algebra and Polynomials;

Gutiérrez, J., Schicho, J., Weimann, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; pp.
12–138.

16. Cox, D.A.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative
Algebra, 3rd ed.; Springer: Cham, Germany, 2015.

17. Conti, P.; Traverso, C. Algebraic and semialgebraic proofs: Methods and paradoxes. In Proc. 3rd International Workshop on
Automated Deduction in Geometry (ADG 2000); Richter-Gebert, J., Wang, D., Eds.; LNAI, 2061; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 83–103.

http://doi.org/10.1007/BF00244942
http://dx.doi.org/10.1016/S0747-7171(86)80007-4
https://www.geogebra.org/m/pR5DME5S#material/uy93nfzr
http://dx.doi.org/10.3390/math9040399
http://dx.doi.org/10.18844/wjet.v13i2.5695
http://dx.doi.org/10.1023/A:1006135322108
http://dx.doi.org/10.1007/s11786-020-00497-7
https://www-fourier.ujf-grenoble.fr/~parisse/giac.html


Mathematics 2021, 9, 2548 28 of 29

18. Dolzmann, A.; Sturm, T.; Weispfenning, V. A New Approach for Automatic Theorem Proving in Real Geometry. J. Autom. Reason.
1998, 21, 357–380.
[CrossRef]

19. De Villiers, M. Clough’s conjecture: A Sketchpad investigation. In Proceedings of the 10th Annual National Congress of the Association
for Mathematics Education of South Africa; Nieuwoudt, S., Froneman, S., Nkhoma, P., Eds.; AMESA: Potchefstroom, South Africa,
2004; Volume 2, pp. 52–56.

20. De Villiers, M. An illustration of the explanatory and discovery functions of proof. Pythagoras 2012, 33, 8. http://dx.doi.org/10.4102/
pythagoras.v33i3.193. [CrossRef]

21. Kovács, Z.; Recio, T.; Sólyom-Gecse, C. Rewriting input expressions in complex algebraic geometry provers. Ann. Math. Artif.
Intell. 2018, 85, 73–87. [CrossRef]

22. Chou, S.C. Mechanical Geometry Theorem Proving, 1st ed.; D. Reidel Publishing Company: Dordrecht, Holland, 1988.
23. Kovács, Z.; Recio, T.; Tabera, L.F.; Vélez, M.P. Dealing with Degeneracies in Automated Theorem Proving in Geometry. Mathematics

2021, 9, 1964. [CrossRef]
24. Kapur, D. A Refutational Approach to Geometry Theorem Proving. Artif. Intell. 1988, 37, 61–93. [CrossRef]
25. Bulmer, M.; Fearnley-Sander, D.; Stokes, T. The kinds of truth of geometric theorems in automated deduction in geometry. In

Proc. 3rd International Workshop on Automated Deduction in Geometry (ADG 2000); Richter-Gebert, J., Wang, D., Eds.; LNAI, 2061;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 129–142.

26. Guan, H.; Rao, Y.S.; Zhang, J.Z.; Cao, S.; Qin, X.L. Method for Processing Graph Degeneracy in Dynamic Geometry Based on
Domain Design. J. Comput. Sci. Technol. 2021, 36, 910–921. [CrossRef]

27. Kovács, Z.; Recio, T.; Vélez, M.P. Detecting truth, just on parts. Rev. MatemáTica Complut. 2019, 32, 451–474. [CrossRef]
28. Kovács, Z. The Relation Tool in GeoGebra 5. In Proceedings of the 10th International Workshop on Automated Deduction in

Geometry (ADG 2014), Coimbra, Portugal, 9–11 July 2014; Botana, F., Quaresma, P., Eds.; Springer: Berlin/Heidelberg, Germany,
2015; pp. 53–71.

29. Botana, F.; Hohenwarter, M.; Janičić, P.; Petrović, I.; Recio, T.; Weitzhofer, S. Automated Theorem Proving in GeoGebra: Current
Achievements. J. Autom. Reason. 2015, 55, 39–59. [CrossRef]

30. GeoGebra Discovery. Available online: https://github.com/kovzol/geogebra-discovery (accessed on 29 July 2021).
31. Bochnak, J.; Coste, M.; Roy, M.F. Real Algebraic Geometry, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1998.
32. Davenport, J.; Heintz, J. Real quantifier elimination is doubly exponential. J. Symb. Comput. 1988, 5, 29–35. [CrossRef]
33. Xia, B.; Yang, L.; Hou, X. Automated discovering and proving for geometric inequalities. In ADG’98: Proceedings of the Second

International Workshop on Automated Deduction in Geometry, Beijing, China, 1–3 August 1998; Gao, X.-S., Wang, D., Yang, L., Eds.;
Springer: Berlin/Heidelberg, Germany, 1998.

34. Xia, B.; Yang, L. Automated Inequality Proving and Discovering; World Scientific Publishing Company: Hackensack, NJ, USA, 2017.
35. Yang, L. Recent advances in automated theorem proving on inequalities. J. Comput. Sci. Technol. 1999, 14, 434–446. [CrossRef]
36. Collins, G.E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Proc. 2nd GI Conference on

Automata. Theory and Formal Languages; Brakhage, H., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 1975; Volume 33, pp. 134–183.

37. Chen, C.; Maza, M.M. Quantifier Elimination by Cylindrical Algebraic Decomposition based on Regular Chains. J. Symb. Comput.
2016, 75, 74–93. [CrossRef]

38. Kovács, Z.; Vajda, R. GeoGebra and the realgeom reasoning tool. In Proceedings of the Fifth International Workshop on
Satisfiability Checking and Symbolic Computation, Paris, France, 5 July 2020; Fontaine, P., Korovin, K., Kotsireas, I.S., Rümmer, P.,
Tourret, S., Eds.; CEUR Workshop Proceedings; RWTH: Aachen, Germany, 2020; Volume 2752, pp. 204–219.

39. Brown, C.W. QEPCAD. Extended Tarski Formulas. Available online: https://www.usna.edu/Users/cs/wcbrown/qep-
cad/B/user/ETF.html (accessed on 12 August 2021).

40. Brown, C.W.; Kovács, Z.; Vajda, R. Supporting Proving and Discovering Geometric Inequalities in GeoGebra by Using Tarski. In
Proceedings of the 13th International Workshop on Automated Deduction in Geometry (ADG2021), Hagenberg, Austria, 15–17
September 2021.

41. Brown, C.W. An Overview of QEPCAD B: A Tool for Real Quantifier Elimination and Formula Simplification. J. JSSAC 2003, 10,
13–22.

42. Cheng, J.; Lazard, S.; Peñaranda, L.; Pouget, M.; Rouillier, F.; Tsigaridas, E. On the topology of real algebraic plane curves. Math.
Comput. Sci. 2010, 4, 113–137. [CrossRef]

43. Chen, C.; Wu, W.; Feng, Y. Visualizing Planar and Space Implicit Real Algebraic Curves with Singularities. J. Syst. Sci. Complex.
2020, 33, 1252–1274. [CrossRef]

44. Losada, R. Color Dinámico (Spanish). Available online: https://www.geogebra.org/m/d6j2nhYG (accessed on 19 July 2021).
45. GeoGebra Manual. Available online: https://wiki.geogebra.org/en/Manual (accessed on 23 August 2021).
46. Losada, R. El Color Dinámico de GeoGebra (Spanish). Gaceta De La Real Sociedad Matematica Espanola 2014, 17, 525–547.
47. Losada, R.; Recio, T.; Valcarce, J.L. Equal Bisectors at a Vertex of a Triangle. In Computational Science and Its Applications—ICCSA

2011; Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6785, pp. 328–341.

48. Cinderella Homepage. Available online: https://cinderella.de/tiki-index.php (accessed on 20 August 2021).

http://dx.doi.org/10.1023/A:1006031329384
http://dx.doi.org/10.4102/pythagoras.v33i3.193
http://dx.doi.org/10.1007/s10472-018-9590-1
http://dx.doi.org/10.3390/math9161964
http://dx.doi.org/10.1016/0004-3702(88)90050-1
http://dx.doi.org/10.1007/s11390-021-0095-8
http://dx.doi.org/10.1007/s13163-018-0286-1
http://dx.doi.org/10.1007/s10817-015-9326-4
https://github.com/kovzol/geogebra-discovery
http://dx.doi.org/10.1016/S0747-7171(88)80004-X
http://dx.doi.org/10.1007/BF02948785
http://dx.doi.org/10.1016/j.jsc.2015.11.008
https://www.usna.edu/Users/cs/wcbrown/qepcad/B/user/ETF.html
https://www.usna.edu/Users/cs/wcbrown/qepcad/B/user/ETF.html
http://dx.doi.org/10.1007/s11786-010-0044-3
http://dx.doi.org/10.1007/s11424-020-8380-0
https://www.geogebra.org/m/d6j2nhYG
https://wiki.geogebra.org/en/Manual
https://cinderella.de/tiki-index.php


Mathematics 2021, 9, 2548 29 of 29

49. CindyJS. Available online: https://cindyjs.org/ (accessed on 22 August 2021).
50. Montag, A.; Richter-Gebert, J. Bringing Together Dynamic Geometry Software and the Graphics Processing Unit. arXiv 2018,

arXiv:1808.04579.
51. Schwartz, J.T.; Sharir, M. On the “Piano Movers” Problem. II. General Techniques for Computing Topological Properties of Real

Algebraic Manifolds. Adv. Appl. Maths. 1983, 4, 298–351. [CrossRef]
52. Bottema, O. Inequalities for R, r and s. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika 1971, 338/352, 27–36.
53. Kovács, Z.; Recio, T.; Vélez, M.P. Merging Maple and GeoGebra Automated Reasoning Tools. In Maple in Mathematics Education

and Research; Corless, R.M., Gerhard, J., Kotsireas, I., Eds.; Communications in Computer and Information Science; Springer
Nature: Cham, Switzerland, 2021.

https://cindyjs.org/
http://dx.doi.org/10.1016/0196-8858(83)90014-3

	Introduction
	The GeoGebra Automated Reasoning Tools
	New Tools in GeoGebra Discovery: Handling Geometric Inequalities
	Visualization of Real Curves and the Dynamic Color Scanning Method
	A Case Study: Relation between the Perimeter and Circumradius of a Triangle
	Combining Visual and Symbolic Strategies to Overcome Difficulties
	The Visual Approach Using the Dynamic Color Scanning Method
	The Symbolic Approach Using Maple Commands

	Conclusions and Further Research
	References

