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MODELING THE CUBE USING GEOGEBRA

This chapter presents the context, main concepid, difficulties involved in
the construction of a GeoGebra model for a 3D-lgégaepresenting a flexible
cube: a cubic framework made up with bars of lerggth and spherical joints
in the vertices. We intend to show how this segiji@asy task requires the
deep coordination of (dynamic) GEOmetry and (comfenal) alGEBRA,
that is, of the specific features of GeoGebra. alijyn the chapter highlights
the excellent opportunities to do mathematics whes attempts to solve the
many different challenges that arise in the corttam process.

We see great value in making physical
models as mathematical experiment . . .
(Bryant, 2008)

INTRODUCTION

This chapter is about the didactical and mathembt@lues behind the
attempts to build up a GeoGebra model for a 3Dage representing a
flexible cube, which is a cubic framework made uthwars of length one and
spherical joints in the vertices. Figure 1 displaye models of the cube: one
made with GeoGebra and the other with Gedmag
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Figure 1. The cube.

The importance of making physical models of geoimaibjects has been
widely emphasized (Polo-Blanco, 2007); likewise, wi@uld like to highlight
the relevant opportunities that modeling with Gebfaebrings for doing and
learning mathematics.

Next section provides arguments in this directiard d@ntroduces the
context, main concepts, and issues involved in experiment. Then, a
detailed description of the modeling process (asdustification) is provided
in a new section. We would like to discuss the goafion of GEOmetry and
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(computational) alGEBRA that is involved in thisopess. We end this
Chapter by proposing further activities and gatigggome conclusions.

LINKAGES, DYNAMIC GEOMETRY, AND GEOMETRY LEARNING
Linkages

Linkages and mathematics have been, for centulesely related topics. A
lively account of some issues on this historicéhtien appears in the recent
and wonderful book by J. Bryant and C. Sangwin 80Drawing curves
(even simple straight lines) with the help of methms is an intriguing topic
in which linkages and mathematics meet since thh &8ntury. We refer to
Kapovich and Millson (2002) for a modern treatmeftthese problems,
including the proof of a statement conjectured bg Fields medalist W.
Thurston on the universality of linkages: “L& be a smooth compact
manifold. Then there is a linkadewhose moduli space is diffeomorphic to a
disjoint union of a number of copies M. It is perhaps remarkable to notice
that some work by the Nobel Prize recipient J. Nasimvolved in this proof.

As complementary information, a visit to some welggs, such as those of
the Kinematics Models for DesigBigital Library (KMODDL)? at Cornell
University or to theTheatrum Machinarufhof the Universita di Modena, is
highly recommended.

Another, but closely related, issue of common egefor mathematicians
and engineers is the study of the rigidity (andxibdity) of bar-joint
frameworks. As stated in the introduction, in tbfmpter we will deal with a
cube consisting of twelve inextendible, incomprelesirods of, say, length
one, but freely pivoting at each of the eight \e&$i. More generally, we could
consider other polyhedral frameworks. An importagic is, then, to decide
when the given framework has some internal degréégedom (i.e., if it has
more possible positions than those that are stdridarall rigid bodies iR,
or in R? if we are thinking of planar frameworks).

Famous mathematicians, such as Euler or Cauchy, Wwarked on diverse
versions of this problem, and some conjecturegimdontext have only been
settled in recent times such as R. Connelly’s cenexample to the
impossibility of constructing flexible polyhedralirfaces with rigid faces. See
Roth (1981) for a readable account of this veryvactield of mathematical
research, with applications, for instance, to tesigh of biomolecules.

Modeling a polyhedral cube as a bar-joint linkafleves us to experiment
with this kind of questions. First of all, if we V& in our hands a physical
model of a cube framework, it is evident that wa p#ace it around in many
different positions, without changing the distandetween any pair of its
(contiguous or not) vertices. This fact is commanall bodies in three-
dimensional space and it is not difficult to verthat there are six parameters
governing such displacements, since we can choaosarkitrary position
(given by three coordinates in physical spacepf@ pointO on the body, and
then we can rotate the body as a whole aroundpttiigt, with such rotation
depending on the so-called three (Euler) anglesise say that all bodies,
even rigid ones, enjoy six degrees of freedof®’in

Since we are mainly interested in the possibleetmal” displacements of
the cube (those that change the relative positietwéen some vertices,
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without breaking the linkage), we would like to absint, once and for all,
those six “external” degrees of freedom. Thusuketssume, as a convention,
that we have fixed two contiguous vertices (vegi©eandU in Figure 1) and
that, moreover, vertek is only allowed to move restricted to a certaiang
(for instance, the horizontal plane containi@gand U). In this way we are
taking care of six displacement parameters: thoediXing vertexO, two for
fixing vertexU (since it is constrained to be on a sphere ofezéhtind radius
1) and one for restricting to be in the intersection of a sphere of cefitend
radiusl and in the horizontal plane.

Still, is it possible to move the cube respectinig tonvention fo©, U and
E? The answer, obviously, is affirmative (see Figlyeand, thus, we say the
cube is non-rigid or that it is flexible. But, howany parameters now rule,
respecting this initial setting, the possible diggiments of this framework? In
other words, how many internal degrees of freedopsdt have? We will see
that this question is highly related to the cortdfan process of a GeoGebra
model for our cube: Its answer should guide thestantion and, conversely,
a successful construction should allow us to expent with the existence of
the different internal displacement parameters.

Dynamic Geometry

In fact, the above circular statement seems justh@n example of the need of
mathematical insight to produce sound dynamic gégmesources, which, on
the other hand, help developing mathematical irsigito a geometric
problem. Yet we think there are some special cistamces in this context.

As it is well known, when opening a Dynamic Geometrorksheet for
drawing some sketch, we are following the tradaiopaper and pencil
paradigm, replacing physical devices (ruler, corapaxtc.) with different
software tools. The relevant difference is that,tlie Dynamic Geometry
situation, we can benefit from a dragging featwvkich is alien to the paper
and pencil context.

Now, bar-joint linkages are physical constructitimst include the dragging
of some of its elements as an intrinsic feature. dh@ makes a linkage
mechanism to let it stand still. In this sense vemld think of Dynamic
Geometry programs as specially fit to deal wittkdige models. A supporting
argument could be a visit to some web pages disgldinkages modeled by
dynamic geometry programs; we cannot refrain frogggsting the collection
of Cabri-Java applets from one of our co-authoeshibiting an interactive
collection of about one hundred mechanisms. Wontl&€toGebra linkages
are displayed at some pages by C. Sanyaviy P. van de Veén

Modeling bar-joint frameworks through Dynamic Gedmesoftware has
some advantages, but also presents some diffisutt@mpared to the classical
case of physical models. In fact, both approacbhassmoothly when dealing
with very simple polygonal or polyhedral figuresutBvhen it comes to more
elaborated items, such as the cube, it is not eag&gep the different pieces
assembled, or to avoid collisions between the w@iffe bars and vertices,
which, in physical reality, tend to be thick, faorin being intangible lines and
points. According to our experience with physicaldals of cubes, they either
have some relatively large dimensions and thus posstruction problems,
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for instance, with magnetic forces among differelements, or tend to be less
flexible than expected. Of course, none of thesesiphl hardships arise with
Dynamic Geometry models.

On the other hand, modeling linkages with Dynamé@o@etry poses other
kind of challenges. For instance, it is difficui model a four-bar planar
linkage where all vertices behave similarly, that showing in a similar
manner the degrees of freedom of the flexible pelogjram when one drags
any one of the vertices. Let’s fix two contiguolesrtices, say® andU and
consider only the internal degrees of freedom.

F

0
Figure 2. A planar four-bar linkage.

Then the two remaining verticeB, E, should have each one degree of
freedom, but not simultaneously. DraggiRgpoint E should move, and vice
versa. But a Dynamic Geometry construction tendssgign the shared degree
of freedom to just one of them, depending on thestraction sequence, and
not to the other. Typically, I is constructed first, when we can dragdeiill
move; but we can not drdg To achieve a homogeneous behaviorf@andF
we have to use some techniques, such as assidgrendegree of freedom to
some external parameter and construckngndF depending on it, or assign
the degree of freedom to, say, one single extratpotated in the bar joining
the two semi-free vertices. It could seem artifickaut we consider that the
reasoning required to explain and to circumventhsdifficulties is, by all
means, an excellent source of geometric thinking.

Last but not the least, we must consider the 3DeisModeling a static 3D
object with a Dynamic Geometry program, which h&Dadisplay, poses by
itself additional problems, not to mention thosegargling modeling the
movement of the 3D figure. Modeling it, in partiaul with GeoGebra, yet
without a specific 3D version, is even more chajlag. Our experience in this
respect is that by using GeoGebra’s algebraic featwe have been able to
simulate, reasonably well, 3D scenes and movenientie cube and that we
accomplish it with GeoGebra even better than thnosgme other Dynamic
Geometry programs with specific 3D versions.

Geometry Learning

In the previous two sections we described the nmadltieal importance of
linkages and the potential role of Dynamic Geomdtrymodeling such
objects. Here we would like to consider the pertageof introducing linkages
as a topic in high school or undergraduate geonf&egio, 1998).
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In many curricula, movements in the plane are dioed with a certain
emphasis on their classification such as translatiotations, symmetries. We
can say that movements are considered importangdometry learning, but
mostly from aqualitative point of view, that is, learning about the diffiere
types of rigid movements and their distinctive mdjgs. Now, it is a
mathematically hard task to classify rigid displaemts in the plane, very
difficult in school mathematics to accomplish it D.

Linkages provide a different approach to work witlovements in a
guantitativeand intuitive way: How many parameters determheegositions
of a point in the plane? And, how many are needed ftriangle? What about
any planar rigid shape? How can we translate théstion to the case of a bar-
joint framework modeling a triangle, a square, etargle, a carpenter rule,
etc.? It is easy to reason, at an intuitive lewath such questions, and it is
surprising to verify, by direct experimentation lwiGeoGebra-built linkages,
how spatial intuition gets, sometimes, wrong. Theecof a bar and joint cube
framework is one of these models that provide léening situations. That is
one of the important reasons behind our attemptscdostruct it with
GeoGebra.

Moreover, simple linkages give rise to complicatget classical high
degree curves, when we study the traces of somesjdls documented above,
tracing curves through linkages is a lively and egling topic, with many
historic anecdotes and connections to technologyldo provides lots of
classroom activities. Linkages provide, in addifioa good model to
understand, through the algebraic translation ef ¢brresponding bar-joint
framework construction, systems of algebraic eguati with an infinite
number of meaningful solutions. This algebra-geoynatonversion that
linkages naturally provide is, in our opinion, amgortant source of advanced
mathematical thinking. And it is particularly closeGeoGebra’s basic design
conception of mixing Algebra and Geometry in a kngntegrated
environment.

MODELING A CUBE

This section describes the problems and solutiehénid our attempts to build
a GeoGeobra model of a joint-and-bar cube.

A Planar Parallelogram

First we analyze the simpler case of a planar jam-bar parallelogram with
bars of length one (Figure 2). We might consideinfj vertexO at the origin
of coordinates and verteid at point(1, 0) in order to focus only on the
internal degrees of freedom that add to the 3 degreeseflérm and, at least,
have all planar bodies. Then, counterclockwisetexdr and vertexe follow.
PointF=(Fx, Fy) must be on a circle centeredlaand of radius 1. This means
only one coordinate of is free. Finally, pointE can be constructed as the
intersection of two circles of radius 1, which arentered atF and O,
respectively. It will have no free coordinates.

In summary, we obtain the following algebraic syste



J.M. ARRANZ, R. LOSADA, J.A. MORA, T. RECIO, M. SAD

> R:= PolynomialRing] Ex Ey Ex Ay
>sysi={( Fx1)"2+( Fy0)"2-1,(Ex F§"2+ (Ey Fy"2-1,( Ex0)":
+(Ey-0)"2-1}

which can be triangularized, using Maple, as

>dec:= Triangularizé sys R mdp Equatigns degd; B -1Ex , Ey"E2* + FxX Hy
[Ex Fx Fx+- F2, Ey Fy FR2-2* Fx F§2], [ BYe+ BEAR-1, Fx FJ}

We obtain two degenerate solutions (the first thridl system in the output
above), corresponding to the caked) andF=0, and one regular solution, in
which Fx is parameterized blgy; Ey is also parameterized byy; andEx is
parameterized b¥x and Fy (thus, byFy alone). Therefore, algebraically as
well as geometrically, we see the parallelogramjtisisone internal degree of
freedom. But this extra degree of freedom can Isggasd to anyone of the
coordinates ofE or F, depending on the way we order the variables for
triangularizing the system or depending on the ergel of the geometric
construction.

If we build up a physical joint and bar paralleiag with one fixed side,
we observe that we can move any of the two sersi-frertices. Now, no
Dynamic Geometry construction seems to achieve #inge the final vertex
that is constructed in order to close the loop, ttabe determined by the
previously constructed vertices; thus only onehaf two free vertices would
bedraggable

A Spatial Parallelogram

We will now deal with the slightly more complicatedse of a 3D joint-and-
bar parallelogram (Figure 3). The most evidenticliffy for GeoGebra to
model this linkage is the lack of 3D facilities. Wean circumvent this
difficulty by taking advantage of the algebra immgd within GeoGebra. We
will associate to each 3-dimensional pdiRk, Py, Pz)ts projection(Qx, Qy)
on the screen, depending on some user-chosen parameand g that
represent different user perspectives, as follows:

sin(g) -sin@) cosf )
(Qx, Q) = (Px Py P} |cosB) sing ) sing
0 cos@ )
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Figure 3. A spatial four-bar linkage.

Once the user introduces, by clicking on some gach as the two ellipses
of Figure 4, the values oi and 8, GeoGebra projects on the screen the
corresponding values of the different 3-dimensiopaints that will be
introduced through numerical coordinates.

arista = 3.88

————— o
[5]
o] .

o

Figure 4. Control icons
Here we fix two adjacent vertices (s&= (0,0,0)andU= (0,1,0)) and the
plane (of equatioz=0) where another vertex (salg) should lie. In this way
we take care of the 6 common degrees of freedomafor3D shapes.
Therefore, the coordinates ferare
E = (Ex, Ey, 0).
SinceE must be at distance 1 frod) these coordinates verify:
ExX +Ey=1.
That is, introducing a new parameger
E = (-cos(e), sin(e), 0).
This parametric representation can be achieved ®oGg&bra by

constructing a slider (see Figure 4) that will cohtinglee in order to move
pointE.
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Now, concerning vertexr = (Fx, Fy, Fz) we observe that, being
equidistant to E and U, it must be in a plane padpmilar to segment/E
through the middle poin® of this segment. But this plane goes also through
O, sinceOE and OU have the same length. Therefore, the coordindtds o
verify the following system of equations:

{(Ex-0)"2 +(Ey-0)"2-1, Ez, (Fx-0)"2 + (FL)"2 + (Fz- 0)"2 - 1, Fx Ex
+ Fy(Ey-1) + Fz Ez},

and it is not difficult to see that eliminating alariables from this system,
except those corresponding to the coordinates oh€& obtains just the sphere

(Fx-0)2 + (Fy - 1)"2 + (Fz- 0)"2 = 1.
A more geometric way of arriving at the same resaitld be the following.

We observe that, for a fixdd, point F describes a circle centered@nd of
radius equal t&1 (Figure 5, see below for the value of this paramet

Figure 5. Determining F

Parametrizing by a new andléhe position of- in this circle we get:

Fx -cos)/2 - sgn(cos ))5 cos{ ) siné
Fy = (sine)+1)/2 + g cos(f) cosk )

Fz I& sin( f)

wherek; andk, are given by:

k1 = sqrt(2+ 2sing))/z

k2 = acos(sing¢ ))/2

Thus we remark that there are, in total, two iraéreegrees of freedom
(anglese andf), which are distributed between the two free eesj one for
each vertex, in the following send€moves on a circle and, for each position
of E, F can be placed at whatever point of another cifeli¢h center and
radius depending oB’s position). From this description, it is easydeduce
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that the locus of all possible placementsFols a surface parameterized by
circles of variable radius, centered at the diffiépoints of the circle displayed
by the midpoint ofEU. After a moment’s thought, we check that such a
surface is just the sphere centered abf radius 1, as expected.

The Cube

By considering the case of the spatial paralleloges a basic building block,
we can construct the cube by, first, adding topghrllelogramOUFE a new
vertex A with two degrees of freedom (i.e., lying on a gphef given radius
and centered at the fixed vert®y, represented by two parametersndj.
Parametera allows the rotation ofA aroundO with Ax constant; and the
parametej does the same, withy constant, that is:

A = (AXx, Ay, Az) = (sin(j) cos(a), sin(a), cos(fsta)).

Next, from this vertexj, two other adjacent vertic&andD are constructed
following the same steps as in the spatial pamleim case. First, we
determineD as the fourth vertex of the parallelogr@AED. Following the
arguments of the previous section, for each pasitbE andA, point D will
be parametrized by an angle d on a circle centatebe middle poinM of
segmeniAE,

M =(Mx, My, Mz) = (E+A)/2.
Moreover,D lies on a plane perpendicularA& and containin@. Thus
OD = OM + cos(d) OM + sin(d) |OM| n/|n|
wheren is the vector product @M by EM,
n = (Mz Ey, - Mz Ex, Mx(My - Ey) - My(MXx - EX))

which is perpendicular t®D and toEA.

Likewise, we can determine now (that is, as thertfouertex of
parallelogranDUBA, assumingd, U , andA are fixed) vertexB depending on

a new parametds.

N =(Nx, Ny, N = (U+ A/2
m = (Nz 0, - NX
OB = ON + cos(b) ON+ sin) PN|m/|r
whereN is the midpoint ofJA andmiis the vector product @N by UN.
It remains to parametrize vertdxWe observe that, for given positions of
O, U, E, F, A B, D, this vertex must be on the intersection of ttepkeres of

same radius, centered Bt B, and D, respectivley Therefore, there are, at
most, two possible (isomer) positions fbr= (Jx, Jy, Jz) We obtain their
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coordinates by considering thaf (andUJ) must be perpendicular ©F (to
BF):

(X - EXY(Dx - FY + (Jy- Ey(Dy- Fy+ Jt Dz- Fp= (
IX(Bx - FY + (Jy- 1)(By- Fy+ JfBz- Fg= O

The intersection of these two planes (note thay dmé J-coordinates are
unknown here) will be a line in the direction detéred by the vector product
of the normal vectors to these two planes. Finally,look for the intersection
points of this line with the sphere centereé aind or radius 1:

(IX-FX)"2+Jy-Fy)y2+Jz-F2)"2=1

yielding the two possible positions 8f The resulting expression is too large
to be reproduced here.

Figure 6 displays the cube for some given, throthghsliders on the top of
the figure, values of the parameters we have inged in this section. The
same values, for another isomer positionJofield the cube at the position
displayed in Figure 7.

Figure 6. A cube constructed as a result of thdysis.
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Figure 7. An isomer for same value of parameters.

OPEN ISSUES AND CONCLUSIONS

The construction of the cube model that we haveridesd in the previous
sections behaves quite well in practice. Setting #iiders at different
positions, GeoGebra numerically computes the coatds of the different
vertices of the cube, following the correspondiraggmetrizations and then
projects them instantaneously onto the screen eteipected positions by
performing some more arithmetical operations. Yes, have to report that
somejumps occur between isomer positions, near singulareptents. For
instance, whera=270°, the parallelograhOBU collapses. In view of the
large bibliography on theontinuity problenfor Dynamic Geometry, it seems
a non-trivial task to model a cube avoiding, if gibte at all, such behavior.

We remark that the cube we have modeled has sétnialt degrees of
freedom, one for each free parameter we have intedl But its distribution
has not been homogeneous. For instance, the fmwxhas been constructed
without any degrees of freedom, by imposing somastaints: being
simultaneously in a sphere and in two planes pelfipatar to some diagonals.
This difficulty to make a model where all semi-fraertices behave
homogeneously is apparently similar to the plarmaalielogram case, but now
we cannot conclude that it is impossible to makehsa construction, since,
after fixing O andU we still have six vertices and six degrees ofdwe. It is
probably a consequence of our approach and nettidnsic characteristic.

In fact, we can think of the Dynamic Geometry setia¢ construction
process as a kind of triangularization of the gystiescribing a cube. In the
planar parallelogram case, the triangularizatiorthef system always yields
one semi-free vertex depending on the other onerilciple for a cube, a
triangularization should be possible with one negefvariable associated to
each semi-free vertex, but the triangularizationGadbner basis computation)
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of the algebraic system describing the distanceristcaints between some

pairs of vertices of the cube seems impracticag wuthe complexity of the

involved computations. If we had succeeded computntomatically this

general solution we could have shown automatidably, in fact, the cube has
six (internal) degrees of freedom. Right now thigportant fact can be just
proved by considering the specific sequence oftwmls presented in our
construction, depending on six parameters. In s@@ese, we see that
attempting to build a model of a cube is an examytere GeoGebra helps
when symbolic computation fails. And, the other vaapund, it shows how
symbolic computation (for 3D coordinates) helps whaurrent GeoGebra
features fail.

Building a cube with GeoGebra provides excellerparpunities to learn a
lot of mathematics at different levels. Some ofnthhave been summarily
introduced in the construction process such asugéieg why the intersection
of three spheres has at most two points, or whyexeF in a spatial
parallelogram moves on a sphere. Also of importaiscthe interaction of
algebra (dimension of the algebraic variety defitgdthe cube’s equations,
triangular systems, etc.) and geometry that israbbur construction.

Moreover, different classroom exploration situatiacen be presented to
work and play with the GeoGebra cube model, such as
— Could you fix (say, by pasting some rigid platesgotwo, ... facets in the

cube and still have some flexibility on the cube®wHmany internal

degrees of freedom will remain?

— For a planar parallelogram, one can feel the omgede of freedom by
checking that once you fix one semi-free vertex, Whole parallelogram
gets fixed. The same applies for the spatial pelcgjlam. You have to fix,
one after another, the two semi-free vertices.tRercube, how can ydeel
its six degrees of freedom? Can you fix whatewer fiemi-free vertices and
still move the cube?

The cube, its construction process, and the mddelf, seem to us an
important source of both algebraic and geometsgint, and, most important,
an endless source of fun, thanks, as always, tG6ke@.

NOTES

! Geomag is a trademark licensed to Geomag SA.

2 http://kmoddlL.library.cornell.edu/

3 http://www.museo.unimo.it/theatrum/

4 http://jimora7.com/Mecan/mecpral3.htm

5 http://web.mat.bham.ac.uk/C.J.Sangwin/howroundommifhtml|
5 http://www.vandeveen.nl/Wiskunde/Applets%20Constaschtm
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