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MODELING THE CUBE USING GEOGEBRA 

This chapter presents the context, main concepts, and difficulties involved in 
the construction of a GeoGebra model for a 3D-linkage representing a flexible 
cube: a cubic framework made up with bars of length one and spherical joints 
in the vertices.  We intend to show how this seemingly easy task requires the 
deep coordination of (dynamic) GEOmetry and (computational) alGEBRA, 
that is, of the specific features of GeoGebra.  Finally, the chapter highlights 
the excellent opportunities to do mathematics when one attempts to solve the 
many different challenges that arise in the construction process. 

 
We see great value in making physical 

models as mathematical experiment . . . 
(Bryant, 2008) 

 INTRODUCTION  

This chapter is about the didactical and mathematical values behind the 
attempts to build up a GeoGebra model for a 3D-linkage representing a 
flexible cube, which is a cubic framework made up with bars of length one and 
spherical joints in the vertices. Figure 1 displays two models of the cube: one 
made with GeoGebra and the other with Geomag1.  
 

       

Figure 1. The cube. 

The importance of making physical models of geometric objects has been 
widely emphasized (Polo-Blanco, 2007); likewise, we would like to highlight 
the relevant opportunities that modeling with GeoGebra brings for doing and 
learning mathematics.  

Next section provides arguments in this direction and introduces the 
context, main concepts, and issues involved in our experiment. Then, a 
detailed description of the modeling process (and its justification) is provided 
in a new section. We would like to discuss the conjunction of GEOmetry and 
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(computational) alGEBRA that is involved in this process. We end this 
Chapter by proposing further activities and gathering some conclusions.  

 LINKAGES, DYNAMIC GEOMETRY, AND GEOMETRY LEARNING  

Linkages 

Linkages and mathematics have been, for centuries, closely related topics. A 
lively account of some issues on this historical relation appears in the recent 
and wonderful book by J. Bryant and C. Sangwin (2008). Drawing curves 
(even simple straight lines) with the help of mechanisms is an intriguing topic 
in which linkages and mathematics meet since the 18th century. We refer to 
Kapovich and Millson (2002) for a modern treatment of these problems, 
including the proof of a statement conjectured by the Fields medalist W. 
Thurston on the universality of linkages: “Let M be a smooth compact 
manifold. Then there is a linkage L whose moduli space is diffeomorphic to a 
disjoint union of a number of copies of M”. It is perhaps remarkable to notice 
that some work by the Nobel Prize recipient J. Nash, is involved in this proof.  

As complementary information, a visit to some web pages, such as those of 
the Kinematics Models for Design Digital Library (KMODDL)2, at Cornell 
University or to the Theatrum Machinarum3 of the Universita di Modena, is 
highly recommended.  

Another, but closely related, issue of common interest for mathematicians 
and engineers is the study of the rigidity (and flexibility) of bar-joint 
frameworks. As stated in the introduction, in this chapter we will deal with a 
cube consisting of twelve inextendible, incompressible rods of, say, length 
one, but freely pivoting at each of the eight vertices. More generally, we could 
consider other polyhedral frameworks. An important topic is, then, to decide 
when the given framework has some internal degrees of freedom (i.e., if it has 
more possible positions than those that are standard for all rigid bodies in R3, 
or in R2 if we are thinking of planar frameworks).  

Famous mathematicians, such as Euler or Cauchy, have worked on diverse 
versions of this problem, and some conjectures in this context have only been 
settled in recent times such as R. Connelly’s counterexample to the 
impossibility of constructing flexible polyhedral surfaces with rigid faces. See 
Roth (1981) for a readable account of this very active field of mathematical 
research, with applications, for instance, to the design of biomolecules. 

Modeling a polyhedral cube as a bar-joint linkage allows us to experiment 
with this kind of questions. First of all, if we have in our hands a physical 
model of a cube framework, it is evident that we can place it around in many 
different positions, without changing the distances between any pair of its 
(contiguous or not) vertices. This fact is common to all bodies in three-
dimensional space and it is not difficult to verify that there are six parameters 
governing such displacements, since we can choose an arbitrary position 
(given by three coordinates in physical space) for one point O on the body, and 
then we can rotate the body as a whole around this point, with such rotation 
depending on the so-called three (Euler) angles. Thus we say that all bodies, 
even rigid ones, enjoy six degrees of freedom in R3. 

Since we are mainly interested in the possible “internal” displacements of 
the cube (those that change the relative position between some vertices, 
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without breaking the linkage), we would like to discount, once and for all, 
those six “external” degrees of freedom. Thus, let us assume, as a convention, 
that we have fixed two contiguous vertices (vertices O and U in Figure 1) and 
that, moreover, vertex E is only allowed to move restricted to a certain plane 
(for instance, the horizontal plane containing O and U). In this way we are 
taking care of six displacement parameters: three for fixing vertex O, two for 
fixing vertex U (since it is constrained to be on a sphere of center O and radius 
1) and one for restricting E to be in the intersection of a sphere of center O and 
radius 1 and in the horizontal plane.  

Still, is it possible to move the cube respecting this convention for O, U and 
E? The answer, obviously, is affirmative (see Figure 1) and, thus, we say the 
cube is non-rigid or that it is flexible. But, how many parameters now rule, 
respecting this initial setting, the possible displacements of this framework? In 
other words, how many internal degrees of freedom does it have? We will see 
that this question is highly related to the construction process of a GeoGebra 
model for our cube: Its answer should guide the construction and, conversely, 
a successful construction should allow us to experiment with the existence of 
the different internal displacement parameters. 

Dynamic Geometry 

In fact, the above circular statement seems just another example of the need of 
mathematical insight to produce sound dynamic geometry resources, which, on 
the other hand, help developing mathematical insight into a geometric 
problem. Yet we think there are some special circumstances in this context.  

As it is well known, when opening a Dynamic Geometry worksheet for 
drawing some sketch, we are following the traditional paper and pencil 
paradigm, replacing physical devices (ruler, compass, etc.) with different 
software tools. The relevant difference is that, in the Dynamic Geometry 
situation, we can benefit from a dragging feature, which is alien to the paper 
and pencil context.  

Now, bar-joint linkages are physical constructions that include the dragging 
of some of its elements as an intrinsic feature. No one makes a linkage 
mechanism to let it stand still. In this sense we could think of Dynamic 
Geometry programs as specially fit to deal with linkage models. A supporting 
argument could be a visit to some web pages displaying linkages modeled by 
dynamic geometry programs; we cannot refrain from suggesting the collection 
of Cabri-Java applets from one of our co-authors4, exhibiting an interactive 
collection of about one hundred mechanisms. Wonderful GeoGebra linkages 
are displayed at some pages by C. Sangwin5 or by P. van de Veen6.   

Modeling bar-joint frameworks through Dynamic Geometry software has 
some advantages, but also presents some difficulties, compared to the classical 
case of physical models. In fact, both approaches run smoothly when dealing 
with very simple polygonal or polyhedral figures. But when it comes to more 
elaborated items, such as the cube, it is not easy to keep the different pieces 
assembled, or to avoid collisions between the different bars and vertices, 
which, in physical reality, tend to be thick, far from being intangible lines and 
points. According to our experience with physical models of cubes, they either 
have some relatively large dimensions and thus pose construction problems, 
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for instance, with magnetic forces among different elements, or tend to be less 
flexible than expected. Of course, none of these physical hardships arise with 
Dynamic Geometry models. 

On the other hand, modeling linkages with Dynamic Geometry poses other 
kind of challenges. For instance, it is difficult to model a four-bar planar 
linkage where all vertices behave similarly, that is, showing in a similar 
manner the degrees of freedom of the flexible parallelogram when one drags 
any one of the vertices. Let’s fix two contiguous vertices, say, O and U and 
consider only the internal degrees of freedom.  

 

Figure 2. A planar four-bar linkage. 

Then the two remaining vertices, F, E, should have each one degree of 
freedom, but not simultaneously. Dragging F, point E should move, and vice 
versa. But a Dynamic Geometry construction tends to assign the shared degree 
of freedom to just one of them, depending on the construction sequence, and 
not to the other. Typically, if F is constructed first, when we can drag it, E will 
move; but we can not drag E. To achieve a homogeneous behavior for E and F 
we have to use some techniques, such as assigning the degree of freedom to 
some external parameter and constructing E and F depending on it, or assign 
the degree of freedom to, say, one single extra point located in the bar joining 
the two semi-free vertices. It could seem artificial, but we consider that the 
reasoning required to explain and to circumvent such difficulties is, by all 
means, an excellent source of geometric thinking.  

Last but not the least, we must consider the 3D issue. Modeling a static 3D 
object with a Dynamic Geometry program, which has a 2D display, poses by 
itself additional problems, not to mention those regarding modeling the 
movement of the 3D figure. Modeling it, in particular, with GeoGebra, yet 
without a specific 3D version, is even more challenging. Our experience in this 
respect is that by using GeoGebra’s algebraic features we have been able to 
simulate, reasonably well, 3D scenes and movements for the cube and that we 
accomplish it with GeoGebra even better than through some other Dynamic 
Geometry programs with specific 3D versions. 

Geometry Learning 

In the previous two sections we described the mathematical importance of 
linkages and the potential role of Dynamic Geometry in modeling such 
objects. Here we would like to consider the pertinence of introducing linkages 
as a topic in high school or undergraduate geometry (Recio, 1998).  
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In many curricula, movements in the plane are introduced with a certain 
emphasis on their classification such as translations, rotations, symmetries. We 
can say that movements are considered important for geometry learning, but 
mostly from a qualitative point of view, that is, learning about the different 
types of rigid movements and their distinctive properties. Now, it is a 
mathematically hard task to classify rigid displacements in the plane, very 
difficult in school mathematics to accomplish it for 3D.  

Linkages provide a different approach to work with movements in a 
quantitative and intuitive way: How many parameters determine the positions 
of a point in the plane? And, how many are needed for a triangle? What about 
any planar rigid shape? How can we translate this question to the case of a bar-
joint framework modeling a triangle, a square, a rectangle, a carpenter rule, 
etc.? It is easy to reason, at an intuitive level, with such questions, and it is 
surprising to verify, by direct experimentation with GeoGebra-built linkages, 
how spatial intuition gets, sometimes, wrong. The case of a bar and joint cube 
framework is one of these models that provide rich learning situations. That is 
one of the important reasons behind our attempts to construct it with 
GeoGebra. 

Moreover, simple linkages give rise to complicated yet classical high 
degree curves, when we study the traces of some joints. As documented above, 
tracing curves through linkages is a lively and appealing topic, with many 
historic anecdotes and connections to technology. It also provides lots of 
classroom activities. Linkages provide, in addition, a good model to 
understand, through the algebraic translation of the corresponding bar-joint 
framework construction, systems of algebraic equations with an infinite 
number of meaningful solutions. This algebra-geometry conversion that 
linkages naturally provide is, in our opinion, one important source of advanced 
mathematical thinking. And it is particularly close to GeoGebra’s basic design 
conception of mixing Algebra and Geometry in a single integrated 
environment. 

MODELING A CUBE 

This section describes the problems and solutions behind our attempts to build 
a GeoGeobra model of a joint-and-bar cube.  

A Planar Parallelogram 

First we analyze the simpler case of a planar joint-and-bar parallelogram with 
bars of length one (Figure 2). We might consider fixing vertex O at the origin 
of coordinates and vertex U at point (1, 0) in order to focus only on the 
internal degrees of freedom that add to the 3 degrees of freedom and, at least, 
have all planar bodies. Then, counterclockwise, vertex F and vertex E follow. 
Point F=(Fx, Fy) must be on a circle centered at U and of radius 1. This means 
only one coordinate of F is free. Finally, point E can be constructed as the 
intersection of two circles of radius 1, which are centered at F and O, 
respectively. It will have no free coordinates.  

In summary, we obtain the following algebraic system: 
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: ([ , , , ])

: {( -1) ^ 2 ( - 0) ^ 2 -1, ( - ) ^ 2 ( - ) ^ 2 -1, ( - 0) ^ 2

( - 0) ^ 2 -1}

R PolynomialRing Ex Ey Fx Fy

sys Fx Fy Ex Fx Ey Fy Ex

Ey

> =

> = + +

+

 

which can be triangularized, using Maple, as 

 :  ( , ): ( , , ); [[ -1, , ^2-2* ^2], 

[ * - ^2, - , ^2-2* ^2], [ ^2 ^2-1, , ]]

dec Triangularize sys R map Equations dec R Ex Ey Fx Fx Fy

Ex Fx Fx Fy Ey Fy Fx Fx Fy Ex Ey Fx Fy

> = +
+ + +

 

 We obtain two degenerate solutions (the first and third system in the output 
above), corresponding to the cases E=U and F=O, and one regular solution, in 
which Fx is parameterized by Fy; Ey is also parameterized by Fy; and Ex is 
parameterized by Fx and Fy (thus, by Fy alone). Therefore, algebraically as 
well as geometrically, we see the parallelogram has just one internal degree of 
freedom. But this extra degree of freedom can be assigned to anyone of the 
coordinates of E or F, depending on the way we order the variables for 
triangularizing the system or depending on the sequence of the geometric 
construction.  
 If we build up a physical joint and bar parallelogram with one fixed side, 
we observe that we can move any of the two semi-free vertices. Now, no 
Dynamic Geometry construction seems to achieve this, since the final vertex 
that is constructed in order to close the loop, has to be determined by the 
previously constructed vertices; thus only one of the two free vertices would 
be draggable. 

A Spatial Parallelogram 

We will now deal with the slightly more complicated case of a 3D joint-and-
bar parallelogram (Figure 3). The most evident difficulty for GeoGebra to 
model this linkage is the lack of 3D facilities. We can circumvent this 
difficulty by taking advantage of the algebra integrated within GeoGebra. We 
will associate to each 3-dimensional point (Px, Py, Pz) its projection (Qx, Qy) 
on the screen, depending on some user-chosen parameters α and β that 
represent different user perspectives, as follows: 

sin( ) -sin( ) cos( )

( , ) ( , , ) cos( ) sin( ) sin( )

0 cos( )

Qx Qy Px Py Pz

β α β
β α β

α

 
 =  
 
 
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Figure 3. A spatial four-bar linkage. 

 Once the user introduces, by clicking on some icon such as the two ellipses 
of Figure 4, the values of α and β, GeoGebra projects on the screen the 
corresponding values of the different 3-dimensional points that will be 
introduced through numerical coordinates. 

 

 

Figure 4. Control icons 

Here we fix two adjacent vertices (say, O = (0,0,0) and U= (0,1,0)) and the 
plane (of equation z=0) where another vertex (say, E) should lie. In this way 
we take care of the 6 common degrees of freedom for all 3D shapes. 
Therefore, the coordinates for E are 

E = (Ex, Ey, 0). 

Since E must be at distance 1 from O, these coordinates verify:  

Ex2 + Ey2 = 1. 

That is, introducing a new parameter e: 

E = (-cos(e), sin(e), 0). 

This parametric representation can be achieved in GeoGebra by 
constructing a slider (see Figure 4) that will control angle e in order to move 
point E.   
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Now, concerning vertex F = (Fx, Fy, Fz), we observe that, being 
equidistant to E and U, it must be in a plane perpendicular to segment UE 
through the middle point Q of this segment. But this plane goes also through 
O, since OE and OU have the same length. Therefore, the coordinates of F 
verify the following system of equations:  

{(Ex - 0)^2 + (Ey - 0)^2 - 1, Ez, (Fx - 0)^2 + (Fy - 1)^2 + (Fz - 0)^2 - 1, Fx Ex 
+ Fy(Ey-1) + Fz Ez} , 

and it is not difficult to see that eliminating all variables from this system, 
except those corresponding to the coordinates of F, one obtains just the sphere  

(Fx - 0)^2 + (Fy - 1)^2 + (Fz - 0)^2 = 1. 

A more geometric way of arriving at the same result could be the following. 
We observe that, for a fixed E, point F describes a circle centered at Q and of 
radius equal to k1 (Figure 5, see below for the value of this parameter).  

 

 

Figure 5. Determining F 

Parametrizing by a new angle f the position of F in this circle we get:  

- cos( ) / 2 - sgn(cos( )) cos( ) sin( )
1 2

(sin( ) 1) / 2 cos( ) cos( )1 2
sin( )

1

Fx e e k f k

Fy e k f k

Fz k f

=

= + +

=

       

      

    

 

where k1 and k2 are given by: 

sqrt(2 2sin( )) / 2
1

acos(sin( )) / 22

k e

k e

= +

=

  

  
 

Thus we remark that there are, in total, two internal degrees of freedom 
(angles e and f), which are distributed between the two free vertices, one for 
each vertex, in the following sense: E moves on a circle and, for each position 
of E, F can be placed at whatever point of another circle (with center and 
radius depending on E’s position). From this description, it is easy to deduce 
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that the locus of all possible placements of F is a surface parameterized by 
circles of variable radius, centered at the different points of the circle displayed 
by the midpoint of EU. After a moment’s thought, we check that such a 
surface is just the sphere centered at U, of radius 1, as expected. 

The Cube 

By considering the case of the spatial parallelogram as a basic building block, 
we can construct the cube by, first, adding to the parallelogram OUFE a new 
vertex A with two degrees of freedom (i.e., lying on a sphere of given radius 
and centered at the fixed vertex O), represented by two parameters a and j. 
Parameter a allows the rotation of A around O with Ax constant; and the 
parameter j does the same, with Ay constant, that is: 

A = (Ax, Ay, Az) = (sin(j) cos(a), sin(a), cos(j) cos(a)). 

Next, from this vertex A, two other adjacent vertices B and D are constructed 
following the same steps as in the spatial parallelogram case. First, we 
determine D as the fourth vertex of the parallelogram OAED. Following the 
arguments of the previous section, for each position of E and A, point D will 
be parametrized by an angle d on a circle centered at the middle point M of 
segment AE, 

M =(Mx, My, Mz) = (E+A)/2. 

Moreover, D lies on a plane perpendicular to AE and containing O. Thus 

OD = OM + cos(d) OM + sin(d) |OM| n/|n| 

where n is the vector product of OM by EM, 

n = (Mz Ey, - Mz Ex, Mx(My - Ey) - My(Mx - Ex)) 

which is perpendicular to OD and to EA. 
 

Likewise, we can determine now (that is, as the fourth vertex of 
parallelogram OUBA, assuming O, U , and A are fixed) vertex B depending on 
a new parameter b: 

 ( ,  ,  )  ( ) / 2

  ( ,  0,  - )

    cos( )   sin( ) | | /| |

N Nx Ny Nz U A

m Nz Nx

OB ON b ON b ON m m

= = +

=

= + +

 

where N is the midpoint of UA and m is the vector product of ON by UN. 
It remains to parametrize vertex J. We observe that, for given positions of 

O, U, E, F, A, B, D, this vertex must be on the intersection of three spheres of 
same radius, centered at F, B, and D, respectivley. Therefore, there are, at 
most, two possible (isomer) positions for J = (Jx, Jy, Jz). We obtain their 
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coordinates by considering that EJ (and UJ) must be perpendicular to DF (to 
BF): 

(  -  )(  -  )  (  -  )(  -  )  (  -  )  0

(  -  )  (  -  1)(  -  )  (  -  )  0

Jx Ex Dx Fx Jy Ey Dy Fy Jz Dz Fz

Jx Bx Fx Jy By Fy Jz Bz Fz

+ + =

+ + =
 

The intersection of these two planes (note that only the J-coordinates are 
unknown here) will be a line in the direction determined by the vector product 
of the normal vectors to these two planes. Finally, we look for the intersection 
points of this line with the sphere centered at F and or radius 1: 

(Jx - Fx)^2 + (Jy - Fy)^2 + (Jz - Fz)^2 = 1 

yielding the two possible positions of J. The resulting expression is too large 
to be reproduced here. 

Figure 6 displays the cube for some given, through the sliders on the top of 
the figure, values of the parameters we have introduced in this section. The 
same values, for another isomer position of J, yield the cube at the position 
displayed in Figure 7.  
 
 

 

 
 

Figure 6. A cube constructed as a result of the analysis. 
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Figure 7. An isomer for same value of parameters. 

OPEN ISSUES AND CONCLUSIONS  

The construction of the cube model that we have described in the previous 
sections behaves quite well in practice. Setting the sliders at different 
positions, GeoGebra numerically computes the coordinates of the different 
vertices of the cube, following the corresponding parametrizations and then 
projects them instantaneously onto the screen at the expected positions by 
performing some more arithmetical operations. Yet, we have to report that 
some jumps occur between isomer positions, near singular placements. For 
instance, when a=270º , the parallelogram AOBU collapses. In view of the 
large bibliography on the continuity problem for Dynamic Geometry, it seems 
a non-trivial task to model a cube avoiding, if possible at all, such behavior. 

We remark that the cube we have modeled has six internal degrees of 
freedom, one for each free parameter we have introduced. But its distribution 
has not been homogeneous. For instance, the final vertex has been constructed 
without any degrees of freedom, by imposing some constraints: being 
simultaneously in a sphere and in two planes perpendicular to some diagonals. 
This difficulty to make a model where all semi-free vertices behave 
homogeneously is apparently similar to the planar parallelogram case, but now 
we cannot conclude that it is impossible to make such a construction, since, 
after fixing O and U we still have six vertices and six degrees of freedom. It is 
probably a consequence of our approach and not an intrinsic characteristic. 

In fact, we can think of the Dynamic Geometry sequential construction 
process as a kind of triangularization of the system describing a cube. In the 
planar parallelogram case, the triangularization of the system always yields 
one semi-free vertex depending on the other one. In principle for a cube, a 
triangularization should be possible with one new free variable associated to 
each semi-free vertex, but the triangularization (or Gröbner basis computation) 
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of the algebraic system describing the distance 1 constraints between some 
pairs of vertices of the cube seems impractical, due to the complexity of the 
involved computations. If we had succeeded computing automatically this 
general solution we could have shown automatically that, in fact, the cube has 
six (internal) degrees of freedom. Right now this important fact can be just 
proved by considering the specific sequence of solutions presented in our 
construction, depending on six parameters. In some sense, we see that 
attempting to build a model of a cube is an example where GeoGebra helps 
when symbolic computation fails. And, the other way around, it shows how 
symbolic computation (for 3D coordinates) helps when current GeoGebra 
features fail. 

Building a cube with GeoGebra provides excellent opportunities to learn a 
lot of mathematics at different levels. Some of them have been summarily 
introduced in the construction process such as discussing why the intersection 
of three spheres has at most two points, or why vertex F in a spatial 
parallelogram moves on a sphere. Also of importance is the interaction of 
algebra (dimension of the algebraic variety defined by the cube’s equations, 
triangular systems, etc.) and geometry that is behind our construction. 

Moreover, different classroom exploration situations can be presented to 
work and play with the GeoGebra cube model, such as:  
– Could you fix (say, by pasting some rigid plates) one, two, … facets in the 

cube and still have some flexibility on the cube? How many internal 
degrees of freedom will remain? 

– For a planar parallelogram, one can feel the one-degree of freedom by 
checking that once you fix one semi-free vertex, the whole parallelogram 
gets fixed. The same applies for the spatial parallelogram. You have to fix, 
one after another, the two semi-free vertices. For the cube, how can you feel 
its six degrees of freedom? Can you fix whatever five semi-free vertices and 
still move the cube? 
The cube, its construction process, and the model itself, seem to us an 

important source of both algebraic and geometric insight, and, most important, 
an endless source of fun, thanks, as always, to GeoGebra. 

NOTES 

1 Geomag is a trademark licensed to Geomag SA. 
2 http://kmoddl.library.cornell.edu/ 
3 http://www.museo.unimo.it/theatrum/  
4 http://jmora7.com/Mecan/mecpral3.htm  
5 http://web.mat.bham.ac.uk/C.J.Sangwin/howroundcom/front.html  
6 http://www.vandeveen.nl/Wiskunde/Applets%20Constructies.htm 
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