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impact on mathematics teaching and learning. Supported by new developments in 
model-centered learning and instruction, the chapters in this book move  beyond the 
traditional views of mathematics and mathematics teaching, providing  theoretical 
perspectives and examples of practice for enhancing students’ mathematical 
 understanding through mathematical and didactical modeling.

Designed specifically for teaching mathematics, GeoGebra integrates  dynamic  multiple 
representations in a conceptually rich learning environment that  supports the 
 exploration, construction, and evaluation of mathematical models and  simulations. 
The open source nature of GeoGebra has led to a growing international community of 
mathematicians, teacher educators, and classroom teachers who seek to tackle the 
challenges and complexity of mathematics education through a  grassroots  initiative 
using instructional innovations.

The chapters cover six themes: 1) the history, philosophy, and theory behind 
GeoGebra, 2) dynamic models and simulations, 3) problem solving and attitude 
change, 4) GeoGebra as a cognitive and didactical tool, 5) curricular challenges and 
initiatives, and 6) equity and sustainability in technology use. This book should 
be of interest to mathematics educators, mathematicians, and researchers in STEM 
education and instructional technologies.
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J. MICHAEL SPECTOR 

FOREWORD 

Today’s students live in a world of ubiquitous technology. However, these 
technologies have not been adequately incorporated into learning and instruction. 
Mathematics education has evolved with the times and the available technologies. 
Calculators eventually made their way into schools. The battle goes on to persuade 
educators and parents and others that what was important was the ability to solve 
complex problems – not the ability to perform complex calculations on paper. 
Architects and engineers and scientists do not perform very many complex 
calculations on paper. They use sophisticated calculating devices. Within the 
context of authentic learning, it makes sense to make similar tools available to 
students. 
 Graphing calculators have been introduced in courses involving mathematics, 
engineering, and science. Why is that happening? It seems to be a natural evolution 
of the use of technology in education. Now that the burden of performing complex 
calculations has shifted to machines, the new burden of understanding the data that 
can be quickly calculated is receiving greater attention. Graphing calculators can 
help in understanding complex functions through a visual and dynamic 
representation of those functions. 
 Have calculators and graphing calculators had a significant impact on students’ 
ability to understand relationships among variables and complex sets of data? It is 
probably the case that the impact has been less than advocates of these tools and 
technologies would like to believe. Given the lack of significant impact of previous 
innovative tools in mathematics education, what lessons can be learned that will 
contribute to future success with new tools? 
 I believe there are two important lessons to be learned. The first is that the 
proper preparation and training of teachers is critical to success when introducing 
new instructional approaches and methods, new learning materials, and innovative 
tools. The second is that new tools and technologies should be used in ways that 
support what is known about how people come to know and understand things. It is 
now widely accepted that people create internal representations to make sense of 
new experiences and puzzling phenomena. These internal representations or mental 
models are important for the development of critical reasoning skills required in 
many professional disciplines, including those involving mathematics. Using 
appropriate pedagogical methods and tools to support these internal representations 
is an important consideration for educators. 
 This volume is about GeoGebra, a new, cost-free, and very innovative 
technology that can be used to support the progressive development of mental 
models appropriate for solving complex problems involving mathematical 
relationships (see http://www.geogebra.org/cms/). GeoGebra is supported with 
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many additional free resources, including lessons, examples, and activities that can 
be used to support the training of teachers in the integration of GeoGebra into 
curricula aligned with standards, goals and objectives. The topics herein range 
widely from using GeoGebra to model real-world problems and support problem 
solving, to provide visualizations and interactive illustrations, and to improve 
student motivation and cognitive development. 
 In short, this is an important book for mathematics educators. It is a must read 
for all secondary and post-secondary math teachers and teacher educators who are 
interested in the integration of GeoGebra or similar technologies in mathematics 
education. In addition, it is a valuable resource for all educators interested in 
promoting the development of critical reasoning skills. 

J. Michael Spector 
University of Georgia, USA 
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LINGGUO BU AND ROBERT SCHOEN 

GEOGEBRA FOR MODEL-CENTERED LEARNING  
IN MATHEMATICS EDUCATION 

An Introduction 

But common as it is, much of education clings too stubbornly to abstraction, 
without enough models to illustrate and enliven them. The cure for this on the 
learner's side is to call for more models. Learners need to recognize that they 
need models and can seek them out. 

—Perkins (1986, p. 147) 

Mental models serve a twofold epistemological function: They represent and 
also organize the subject's knowledge in such a way that even complex 
phenomena become plausible. 

—Seel, Al-Diban, & Blumschein (2000, p. 130) 

It makes no sense to seek a single best way to represent knowledge—because 
each particular form of expression also brings its own particular limitations. 

—Minsky (2006, p. 296) 

GeoGebra (http://www.geogebra.org) is a community-supported open-source 
mathematics learning environment that integrates multiple dynamic representations, 
various domains of mathematics, and a rich variety of computational utilities for 
modeling and simulations. Invented in the early 2000s, GeoGebra seeks to implement 
in a web-friendly manner the research-based findings related to mathematical 
understanding and proficiency as well as their implications for mathematics teaching 
and learning: A mathematically competent person can coordinate various 
representations of a mathematical idea in a dynamic way and further gain insight into 
the focal mathematical structure. By virtue of its friendly user interface and its web 
accessibility, GeoGebra has attracted tens of thousands of visitors across the world, 
including mathematicians, classroom math teachers, and mathematics educators. 
Through the online GeoGebra Wiki and global and local professional conferences, an 
international community of GeoGebra users has taken shape. This growing community 
is actively addressing traditional problems in mathematics education and developing 
new pedagogical interventions and theoretical perspectives on mathematics teaching 
and learning, while taking advantage of both technological and theoretical inventions. 
Meanwhile, in the fields of learning sciences and instructional design, researchers have 
highlighted the theoretical and practical implications of mental models and conceptual 
models in complex human learning (Milrad, Spector, & Davidsen, 2003; Seel, 2003). A 
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model-centered framework on learning and instruction does not only help us 
understand the cognitive processes of mathematical sense-making and learning 
difficulties, but also lends itself to instructional design models that facilitates 
meaningful learning and understanding. Thus, we see in the GeoGebra project a kind of 
synergy or concerted effort between technology and theory, individual inventions and 
collective participation, local experiments and global applications. GeoGebra has 
created a positive ripple effect, centered around technology integration in mathematics 
teaching and learning, which has reached out from a graduate design project at the 
University of Salzburg across international borders to all major regions of the world, 
from university students to children in rural areas. For the most part, GeoGebra and 
GeoGebra-based curricular activities have been a grassroots phenomenon, motivated 
distinctively by teachers’ professional commitment and their mathematical and 
didactical curiosity. 
 This volume stands as an initial endeavor to survey GeoGebra-inspired 
educational efforts or experiments in both theory and practice in mathematics 
education across the grade levels. The focus of the book is centered on the 
international use of GeoGebra in model-centered mathematics teaching and 
learning, which naturally goes beyond traditional mathematics instruction in 
content and coverage of concepts. The chapters in this volume address broad 
questions of mathematics education, citing specific examples along the way, with a 
clear commitment to mathematical understanding and mathematical applications. 
In addition to being a computational tool, GeoGebra has been characterized by 
several authors to be a conceptual tool, a pedagogical tool, a cognitive tool, or a 
transformative tool in mathematics teaching and learning. This tool perspective 
underlines the versatile roles of GeoGebra in mathematical instruction and 
mathematics education reforms. In general, the chapters address mathematics 
teaching and learning as a complex process, which calls for technological tools 
such as GeoGebra for complexity management, multiple representations, sense-
making, and decision-making. In what follows, we briefly introduce the key ideas 
of each chapter along six themes that run naturally through all the chapters. 

History, Philosophy, and Theory 

In Chapter 1, Hohenwarter and Lavicza review the history and philosophy behind 
the initial GeoGebra project and its subsequent and ongoing evolution into an 
international community project. They further envision a community-based 
approach to technology integration in mathematics education on an international 
scale. Chapter 2 features a theoretical paper by Bu, Spector, and Haciomeroglu, 
who review the literature on mathematical understanding from the psychological, 
philosophical, and mathematical perspectives, shedding light on the relevancy of 
mental models in reconceptualizing mathematical meaning and understanding. 
They put forward a preliminary framework for GeoGebra-integrated instructional 
design by synthesizing major principles from Model-Facilitated Learning, Realistic 
Mathematics Education, and Instrumental Genesis. The overarching goal is to 
identify design principles that foster deep mathematical understanding by means of 
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GeoGebra-based conceptual models and modeling activities. They also call for 
increased attention to the mutually defining role of GeoGebra tools and students’ 
instrumented mathematical behavior, especially in complexity management. 

Dynamic Modeling and Simulations 

In Chapter 3, Pierce and Stacey report on the use of dynamic geometry to support 
students’ investigation of real-world problems in the middle and secondary grades. 
Dynamic models of real-world scenarios, as they found, help students to make 
mathematical conjectures and enhance their understanding of the mathematical 
concepts. Furthermore, the multiple features of dynamic modeling contribute to 
improving students’ general attitudes toward mathematics learning. 
 Burke and Kennedy (Chapter 4) explore the use of dynamic GeoGebra models 
and simulations in building a bridge between students’ empirical investigations and 
mathematical formalizations. Their approach to abstract mathematics illustrates  
the didactical conception of vertical mathematization, a process by which 
mathematical ideas are reconnected, refined, and validated to higher order formal 
mathematical structures (e.g., Gravemeijer & van Galen, 2003; Treffers, 1987). 
They aim to provide model-based conceptual interventions that support students’ 
development of valid mental models for formal mathematics, an important practice 
that typically receives inadequate treatment in upper-division mathematics courses. 
In Chapter 5, Novak, Fahlberg-Stojanovska, and Renzo present a holistic learning 
model for learning mathematics by doing mathematics—building simulators with 
GeoGebra to seek deep conceptual understanding of a real-world scenario and the 
underlying mathematics (cf. Alessi, 2000). They illustrate their learning model 
with a few appealing design examples in a setting that could be called a 
mathematical lab, where science and mathematics mutually define and support one 
another in sense-making and mathematical modeling. 

GeoGebra Use, Problem Solving, and Attitude Change 

Iranzo and Fortuny (Chapter 6) showcase, from the perspective of instrumental 
genesis, the complex interactions among the mathematical task, GeoGebra tool 
use, and students’ prior mathematical and cognitive background, citing 
informative cases from their study. GeoGebra-based modeling helped their 
students diagnose their mathematical conceptions, visualize the problem 
situations, and overcome algebraic barriers and thus focus on the geometric 
reasoning behind the learning tasks. Students’ problem solving strategies, as the 
authors observe, are the result of the nature of the instructional tasks, students’ 
background and preferences, and the role of the teacher. In Chapter 7, 
Mousoulides continues the discussion about the modeling approach to 
GeoGebra-integrated problem solving in the middle grades, where GeoGebra is 
employed as a conceptual tool to help students make connections between real-
world situations and mathematical ideas. Students in his study constructed 
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sophisticated dynamic models, which broadened their mathematical exploration 
and visualization skills. 
 Chapter 8 features an article by Arranz, Losada, Mora, Recio, and Sada who report 
on their experience in modeling a 3-D linkage cube using GeoGebra. In the process of 
building a GeoGebra-based flexible cube, one encounters interesting connections 
between geometry and algebra and develops problem solving skills while resolving 
intermediate challenges along the way. The cube problem and its educational 
implications are typical of a wide range of real-world modeling problems in terms of 
the mathematical connections and the ever expanding learning opportunities that arise, 
sometimes unexpectedly, in the modeling process (e.g., Bu, 2010). 
 Haciomeroglu (Chapter 9) reports on his research on secondary prospective 
teachers’ experience with GeoGebra-based dynamic visualizations in instructional 
lesson planning. His findings highlight the impact of GeoGebra use on 
participants’ attitudes toward mathematic teaching and the importance of 
collaborative group work in GeoGebra-integrated teacher education courses. 
 Gómez-Chacón (Chapter 10) adopts a multi-tier, mixed methods research design, 
which consists of a large-scale survey (N = 392), a small focus study group (N = 17), 
and six individual students, to investigate the influences of GeoGebra-integrated 
mathematics instruction on secondary students’ attitudes toward mathematics learning 
in computer-enhanced environments. While GeoGebra use is found to foster students’ 
perseverance, curiosity, inductive attitudes, and inclination to seek accuracy and rigor 
in geometric learning tasks, the findings also point to the complex interactions between 
computer technology, mathematics, and the classroom environment. The author further 
analyzes the cognitive and emotional pathways underlying students’ attitudes and 
mathematical behaviors in such instructional contexts, calling for further research to 
find ways to capitalize on the initial positive influences brought about by GeoGebra use 
and foster the development of students’ sustainable positive mathematical attitudes. 

GeoGebra as Cognitive and Didactical Tools 

Karadag and McDougall (Chapter 11) survey the features of GeoGebra from the 
cognitive perspective and discuss their pedagogical implications in an effort to 
initiate both theoretical and practical experimentation in conceptualizing GeoGebra 
as a cognitive tool for facilitating students’ internal and external multiple 
representations (cf. Jonassen, 2003; Jonassen & Reeves, 1996). Along a similar line 
of thought, Ronchi (Chapter 12) views GeoGebra as a methodological or didactical 
resource that supports the teaching and learning of mathematics by helping teachers 
and their students visualize formal mathematical knowledge and promote their sense 
of ownership through dynamic constructions in a lab setting. 

Curricular Initiatives 

In Chapter 13, Little outlines his vision for a GeoGebra-based calculus program at the 
high school level, showcasing the distinctive features of GeoGebra for facilitating 
students’ and teachers’ coordination of algebra and geometry, which is at the very core 
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of learning and teaching calculus. As seen by Little, the simplicity of GeoGebra’s user 
interface and its computational architecture allow students to construct their own 
mathematical models and, by doing so, reinvent and enhance their ownership of 
calculus concepts. In Chapter 14, Lingefjärd explores the prospect of revitalizing 
Euclidean geometry in school mathematics in Sweden and internationally by taking 
advantage of GeoGebra resources. Perhaps, a variety of school mathematics, including 
informal geometry and algebra, can be reconsidered and resequenced along Little and 
Lingefjärd’s lines of thought. In response to increased computational resources and the 
evolving needs of society (exemplified often by applications of number theory, for 
example), our conception of mathematics has changed significantly over the past 
several decades. It is likely that the open accessibility and the dynamic nature of 
GeoGebra may contribute to or initiate a similarly profound evolution of school 
mathematics and its classroom practice. 

Equity and Sustainability 

GeoGebra has also inspired research and implementation endeavors in developing 
countries, where access to advanced computational resources is limited. In Chapter 15, 
De las Peñas and Bautista bring the reader to the Philippines to observe how children 
and their mathematics teachers coordinate the construction of physical manipulatives 
and GeoGebra-based mathematical modeling activities. They also share their 
approaches to strategic technology deployment when a teacher is faced with limited 
Internet access or numbers of computers. Jarvis, Hohenwarter, and Lavicza (Chapter 
16) reflect on the feedback from international users of GeoGebra and highlight a few 
key characteristics of the GeoGebra endeavor—its dynamic international community, 
its sustainability, and its values in providing equitable and democratic access to 
powerful modeling tools and mathematics curricula to all students and educators across 
the world. As GeoGebra users join together with mathematicians and mathematics 
educators, the authors call for further research on the development of GeoGebra-
inspired technology integration and the influence and impact of GeoGebra and the 
GeoGebra community in the field of mathematics education. 
 It is worth noting that, given the international nature of this first volume on 
GeoGebra and its applications in mathematical modeling, the editors encountered 
great challenges in the editing process in terms of languages and styles. With certain 
manuscripts, extensive editorial changes were made by the editors and further 
approved by the chapter authors. Meanwhile, the editors tried to maintain the 
international flavor of the presentations. We invite our readers to consider the context 
of these contributions, focus on the big ideas of theory and practice, and further join 
us in the ongoing experimentation of community-based technology integration in 
mathematics education, taking advantage of GeoGebra and similar technologies. 
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MARKUS HOHENWARTER AND ZSOLT LAVICZA 

1. THE STRENGTH OF THE COMMUNITY: HOW 
GEOGEBRA CAN INSPIRE TECHNOLOGY 

INTEGRATION IN MATHEMATICS 

The dynamic mathematics software GeoGebra has grown from a student project 
into a worldwide community effort. In this chapter, we provide  a brief overview of 
the current state of the GeoGebra software and its development plans for the 
future. Furthermore, we discuss some aspects of the fast growing international 
network of GeoGebra Institutes, which seeks to support events and efforts related 
to open educational materials, teacher education and professional development, as 
well as research projects concerning the use of dynamic mathematics technology in 
classrooms all around the world. 

INTRODUCTION 

During the past decades, it has been demonstrated that a large number of enthusiasts 
can alter conventional thinking and models of development and innovation. The 
success of open source projects such as Linux®, Firefox®, Moodle®, and 
Wikipedia® shows that collaboration and sharing can produce valuable resources in 
a variety of areas of life. With the increased accessibility of affordable computing 
technologies in the 1980s and 90s, there was overly enthusiastic sentiment that 
computers would become rapidly integrated into education, in particular, into 
mathematics teaching and learning (Kaput, 1992). However, numerous studies 
showed only a marginal uptake of technology in classrooms after more than two 
decades (Gonzales, 2004). There were many attempts and projects to promote wider 
technology integration, but many of these attempts led to only marginal changes in 
classroom teaching (Cuban, Kirkpatrick & Peck, 2001). While working on the open 
source project GeoGebra, we are witnessing the emergence of an enthusiastic 
international community around the software. It will be interesting to see whether or 
not this community approach could penetrate the difficulties and barriers that hold 
back technology use in mathematics teaching. Although the community around 
GeoGebra is growing astonishingly fast, we realize that both members of the 
community and teachers who are considering the use of GeoGebra in their 
classrooms need extensive support. To be able to offer such assistance and promote 
reflective practice, we established the International GeoGebra Institute (IGI) in 2008. 
In this chapter, we offer a brief outline of the current state of both the GeoGebra 
software and its community, and we also hope to encourage colleagues to join and 
contribute to this growing community. 
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GEOGEBRA 

The software GeoGebra originated in the Master’s thesis project of Markus 
Hohenwarter at the University of Salzburg in 2002. It was designed to combine 
features of dynamic geometry software (e.g., Cabri Geometry®, Geometer’s 
Sketchpad®) and computer algebra systems (e.g., Derive®, Maple®) in a single, 
integrated, and easy-to-use system for teaching and learning mathematics 
(Hohenwarter & Preiner, 2007). During the past years, GeoGebra has developed 
into an open-source project with a group of 20 developers and over 100 
translators across the world. The latest version of GeoGebra offers dynamically 
linked multiple representations for mathematical objects (Hohenwarter & Jones 
2007) through its graphical, algebraic, and spreadsheet views. Under the hood, 
we are already using a computer algebra system (CAS) that will be made fully 
accessible for users through a new CAS view in the near future. GeoGebra, 
which is currently available in 50 languages, has received several educational 
software awards in Europe and the USA (e.g. EASA 2002, digita 2004, 
Comenius 2004, eTwinning 2006, AECT 2008, BETT 2009 finalist, Tech Award 
2009, NTLC Award 2010). 
 Apart from the standalone application, GeoGebra also allows the creation of 
interactive web pages with embedded applets. These targeted learning and 
demonstration environments are freely shared by mathematics educators on 
collaborative online platforms like the GeoGebraWiki (www.geogebra.org/wiki). 
The number of visitors to the GeoGebra website has increased from about 50,000 
during 2004 to more than 5 million during 2010 (see Figure 1) coming from over 
180 countries. 

 

Figure 1. Visitors per year to www.geogebra.org (in millions). 

INTERNATIONAL GEOGEBRA INSTITUTE (IGI) 

The growing presence of open-source tools in mathematics classrooms on an 
international scale is calling for in-depth research on the instructional design of 
GeoGebra-based curricular modules and the corresponding impact of its dynamic 
mathematics resources on teaching and learning (Hohenwarter & Lavicza, 2007). 
Thus, we gathered active members of the GeoGebra community from various 
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countries at a conference in Cambridge, UK in May 2008, and founded an 
international research and professional development network: the International 
GeoGebra Institute (www.geogebra.org/igi). This not-for-profit organization 
intends to coordinate international research and professional development efforts 
around the free software. The main goals of the International GeoGebra Institute 
are to: 

– Establish self-sustaining local GeoGebra user groups; 
– Develop and share open educational materials; 
– Organize and offer workshops for educators; 
– Improve and extend the features of the software GeoGebra; 
– Design and implement research projects both on GeoGebra and IGI; 
– Deliver presentations at national and international conferences. 

FUTURE AND VISION 

In order to provide adequate support and training, we are in the process of 
establishing local groups of teachers, mathematicians, and mathematics educators 
who work together in developing and adapting the software as well as educational 
and professional development materials to serve their local needs. For example, 
through a recent project funded by the National Centre for Excellence in 
Mathematics Teaching (NCETM), we have been collaborating with nine 
mathematics teachers in England to embed GeoGebra-based activities into the 
English curriculum and develop adequate professional development programs 
(Jones et al., 2009). This project aspired to nurture communities of teachers and 
researchers in England who are interested in developing and using open source 
technology in schools and in teacher education. 
 Since May 2008, more than forty local GeoGebra Institutes have already been 
established at universities in Africa, Asia, Australia, Europe, North and South 
America (Figure 2). For example, the Norwegian GeoGebra Institute in Trondheim 
comprises of more than 50 people in a nation-wide network of GeoGebra trainers, 
mathematicians, and mathematics educators who provide support for teachers and 
collaborate on research projects in relation to the use of free educational resources. 
Since the first international GeoGebra conference in July 2009 in Linz, Austria, 
more than a dozen local conferences have been held or scheduled in America, Asia, 
and Europe. These conferences as well as workshops and local meetings are shared 
and publicized through a public events calendar on GeoGebra’s website (Figure 3). 
For example, several European countries are collaborating in a recently awarded 
grant to establish a Nordic GeoGebra Network focusing on joint seminars and 
conferences. 
 Several local GeoGebra Institutes are also involved in pioneering projects 
featuring the use of netbook and laptop computers. For example, three million 
laptops with GeoGebra preinstalled have just been given out to students by the 
government of Argentina. The GeoGebra Institute in Buenos Aires is actively 
involved in corresponding teacher training and curricular development activities. 
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Similar laptop projects are in progress in Australia and Spain. More information on 
the different GeoGebra Institutes and their activities can be found on 
http://www.geogebra.org/igi. 

 

Figure 2. Network of local GeoGebra Institutes: www.geogebra.org/community. 

 

Figure 3. GeoGebra events map and calendar: http://www.geogebra.org/events. 

DEVELOPMENT OF INSTRUCTIONAL MATERIALS 

On the GeoGebraWiki (www.geogebra.org/wiki) website, users have already 
shared over fifteen thousand free interactive online worksheets that can be remixed 
and adapted to specific local standards or individual needs. In order to better 
support the sharing of open educational materials in the future, we are working on 
a material sharing platform that will also allow users to provide comments and rate 
the quality of materials. Furthermore, GeoGebra materials will also be useable on 
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mobile devices and phones in the future (e.g., iPhone®, iPad®, Android® phones, 
Windows® phones). 
 Concerning the software development of GeoGebra, we are engaging more and 
more talented Java programmers with creative ideas for new features and 
extensions through our new developer site (www.geogebra.org/trac). With the 
recent addition of a spreadsheet view, GeoGebra is ready for more statistical 
charts, commands, and tools. The forthcoming computer algebra system (CAS) and 
3D graphics views will provide even more applications of the software both in 
schools as well as at the university level. With all these planned new features, it 
will be crucial to keep the software’s user interface simple and easy-to-use. Thus, 
we are also working on a highly customizable new interface where users can easily 
change perspectives (e.g., from geometry to statistics) and/or rearrange different 
parts of the screen using drag and drop. 

OUTREACH 

As an open source project, GeoGebra is committed to reaching out specifically to 
users in developing countries who otherwise may not be able to afford to pay for 
software. Together with colleagues in Costa Rica, Egypt, the Philippines, Uruguay, 
and South Africa, we are currently investigating the possibilities of setting up local 
user groups or GeoGebra Institutes, and developing strategies to best support local 
projects in these regions. For example, we have recently developed a special 
GeoGebra version for the one-laptop-per-child project in Uruguay. Involving 
colleagues in our international network could create new opportunities to support 
countries with limited resources and exchange educational resources and experiences. 

SUMMARY 

With this introductory chapter, we hope to raise attention to the growing GeoGebra 
community and encourage our colleagues in all nations to contribute to our global 
efforts in enhancing mathematics education for students at all levels. It is 
fascinating and encouraging to read about the various approaches our colleagues 
have taken to contribute to the GeoGebra project. If you are interested in getting 
involved in this open source endeavor, please visit the GeoGebra/IGI websites, 
where we will continue to discuss together which directions the GeoGebra 
community should take in the future. 
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2. TOWARD MODEL-CENTERED MATHEMATICS 
LEARNING AND INSTRUCTION USING GEOGEBRA 

A Theoretical Framework for Learning Mathematics with Understanding 

This chapter presents a model-centered theoretical framework for integrating 
GeoGebra in mathematics teaching and learning to enhance mathematical 
understanding. In spite of its prominence in the ongoing mathematics education 
reform, understanding has been an ill-defined construct in the literature. After 
reviewing multiple perspectives from learning theories and mathematics education, 
we propose an operational definition of understanding a mathematical idea as 
having a dynamic mental model that can be used by an individual to mentally 
simulate the structural relations of the mathematical idea in multiple 
representations for making inferences and predictions. We further recognize the 
complexity of mathematical ideas, calling for a model-centered framework for 
instructional design in dynamic mathematics. Synthesizing theoretical principles of 
Realistic Mathematics Education, Model-Facilitated Learning, and Instrumental 
Genesis, we contend that GeoGebra provides a long-awaited technological 
environment for mathematics educators to reconsider the teaching and learning of 
school mathematics in terms of the human nature of mathematics, contemporary 
instructional design theories, and the influences of digital tools in mathematical 
cognition. We present three design examples to illustrate the relevance of a model-
centered theoretical framework. 

INTRODUCTION 

Mathematics learning and instruction is a highly complex process as has been 
unveiled by more than three decades of research in mathematics education 
(Gutiérrez & Boero, 2006; Lesh, 2006; Lesh & Doerr, 2003). Under the surface 
of symbols and rules lies a rich world of mathematical ideas that permeate a  
host of contexts and various domains of mathematics. The cognitive complexity  
of mathematics in general reflects the human nature of mathematics and 
mathematics learning and instruction that can be characterized in multiple 
dimensions (Dossey, 1992; Freudenthal, 1973). First, mathematics learning is 
both an individual and a social process, where diverse ways of individual 
experiences interact with the normative elements of a field with thousands of 
years of history. Second, there are virtually no isolated mathematical ideas. From 
numeration to calculus, each mathematical concept is connected to other 
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concepts and vice versa. `It is within such a web of connected concepts that each 
mathematical idea takes on its initial meaning and further evolves as learners 
come into closer contact with a variety of related concepts and relations. Third, 
these interconnections among mathematical ideas are frequently solidified by 
their multiple representations and the connections among the multiple 
representations (Goldin, 2003; Sfard, 1991). A parabola, for example, is 
connected to and further understood in depth by virtue of its relations to lines, 
points, conics, squares, area, free fall, paper-folding, projectiles, and the like. It 
is further represented by verbal, numeric, algebraic, and geometric 
representations, and in particular, their interconnections. Fourth, mathematical 
representations are ultimately cultural artifacts, indicative of the semiotic, 
cultural, and technological developments of a certain society (Kaput, 1992; 
Kaput, Hegedus, & Lesh, 2007; Presmeg, 2002, 2006). For example, although 
the abacus has been used in some Asian cultures for centuries as a primary 
calculation device, it now coexists with graphing calculators and computer 
software. Technology changes, and it further changes what we do and what we 
can do as well as the way we handle traditional instructional practices (Milrad, 
Spector, & Davidsen, 2003). With a growing variety of new tools available for 
mathematics learning and teaching, traditionally valued mathematical operations 
such as graphing and factoring are becoming trivial mathematical exercises; 
learners and teachers alike are faced with new choices with regard to the use of 
tools and the redesign of learning activities (Puntambekar & Hubscher, 2005). 
All these aspects of mathematics education contribute to its growing complexity, 
only to be further complicated by the evolving role of mathematics and changing 
goals of mathematics education in an ever-changing information society 
(diSessa, 2007; Kaput, Noss, & Hoyles, 2002). 
 The complexity of mathematics learning and instruction lends itself to a 
variety of theoretical frameworks and new interactive learning technologies. 
The theory of Realistic Mathematics Education (RME) (Freudenthal, 1978; 
Gravemeijer, Cobb, Bowers, & Whitenack, 2000; Streefland, 1991; Treffers, 
1987) stands out among the contemporary theories of mathematics education 
because it is grounded in the historical and realistic connections of 
mathematical ideas. RME conceptualizes mathematics learning as a human 
activity and a process of guided reinvention through horizontal and vertical 
mathematizations. In horizontal mathematization, realistic problem situations 
are represented by mathematical models in a way that retains its essential 
structural relations; in vertical mathematization, these models are further 
utilized as entry points to support sense-making within a world of increasingly 
abstract mathematical ideas in a chain of models. Within RME, models are 
used primarily as didactical tools for teaching mathematics to situate the origin 
and the conceptual structure of a mathematical idea (Van den Heuvel-
Panhuizen, 2003). However, with natural extensions, such didactical models 
can be used to generate more advanced ideas and foster problem solving skills, 
especially in vertical mathematization. The instructional principles of RME are 
further supported by new interactive mathematics learning technologies, which 
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typically provide multiple representations, dynamic links, and simulation tools. 
Among the various mathematics learning technologies, GeoGebra 
(www.geogebra.org) has gained growing international recognition since its 
official release in 2006 because of its open source status, international 
developers, and a growing user base of mathematicians, mathematics 
educators, and classroom teachers (J. Hohenwarter & M. Hohenwarter, 2009; 
Hohenwarter & Preiner, 2007). As a 21st-century invention, GeoGebra is one of 
several next-generation mathematics learning technologies that are reshaping 
the representational infrastructure of mathematics education and providing the 
world community with easy and free access to powerful mathematical 
processes and tools (Kaput et al., 2002). 
 Viewed from the theoretical perspective of RME, GeoGebra affords a 
variety of digital resources that allow learners to mathematize realistic problem 
situations, invent and experiment with personally meaningful models using 
multiple representations and modeling tools, and further proceed to formulate 
increasingly abstract mathematical ideas. GeoGebra is open source and thus is 
freely available to the international community; it is also Web-friendly and is 
thus supportive of both individual reflection and Web-based social interactions. 
This integration of RME principles and GeoGebra technological features finds 
a similar theoretical framework developed in the instructional design 
community—Model-Facilitated Learning (MFL) (de Jong & van Joolingen, 
2008; Milrad et al., 2003). As a technology-integrated instructional design 
framework grounded in Model-Centered Learning and Instruction (MCLI) 
(Seel, 2003, 2004), MFL tackles complex subject matter through modeling and 
simulations using systems dynamic methods and emphasizing the use of 
concrete scenarios, complexity management, and high-order decision-making. 
The existence of GeoGebra provides an intellectual bridge that connects a 
domain-specific theory of mathematics education, RME, and a general 
instructional design framework that is grounded in contemporary learning 
theories. Indeed, Seel (2003) characterizes RME as one of the exemplary 
domain-specific theories that operationalizes the basic tenets of MCLI. In our 
efforts to seek a theoretical framework that facilitates GeoGebra-integrated 
mathematics learning and instruction, we found it useful to synthesize RME 
and MFL principles, incorporating recent developments in the use of 
technology in mathematics education, in particular, the theory of Instrumental 
Genesis (IG) (Guin, Ruthven, & Trouche, 2005; Trouche, 2004), which sheds 
light on the mutually defining relationship between technology use and 
learners’ evolving ways of mathematical reasoning. We believe that these three 
theoretical frameworks, in spite of their different origins and theoretical 
orientations, are collectively informative with regard to the ongoing use of 
GeoGebra in mathematics education. 
 In this chapter, we synthesize the major principles of RME and MFL in an effort 
to develop a preliminary theoretical framework toward model-centered learning 
and instruction using GeoGebra. We recognize both the didactical and the 
mathematical complexity of subject matter and the integral role of technology in 
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mathematics learning and teaching, aiming for deep mathematical understanding 
and meaningful learning. 

UNDERSTANDING AND DYNAMIC REPRESENTATIONS 

A recurring and dominant theme in mathematics education reform is 
understanding, which is frequently used in conjunction with sense-making or 
meaningful learning in such phrases as teaching for understanding and learning 
with understanding (Brenner et al., 1997; Darling-Hammond et al., 2008). 
Understanding has, in effect, become a means and a goal of mathematics 
education. However, there is no clear definition of mathematical understanding. By 
contrast, it is relatively easy to identify specific cases where learners show a lack of 
understanding. For example, some students may automatically resort to subtraction 
in response to □ + 7 = 21, but cannot explain why they did that or if their answer 
14 is correct. Similar examples are abundant in school mathematics. 
 Johnson-Laird (1983) suggests that the term understanding has plenty of criteria 
but may not have an essence. In his theory of comprehension, he contends that in 
understanding an utterance, learners first construct propositional representations 
and further make use of such propositional representations for the construction of a 
mental model, which preserves the structural relations in a state of affairs and 
enables the learner to make inferences. Mental models can be recursively revised 
and dynamically manipulated in support of deeper comprehension and inferences. 
Our understanding of a certain phenomenon amounts to the construction of a 
mental model of it; our interpretation depends on both the model and the processes 
involved in the construction, extension, and evaluation of the mental model. 
Indeed, as Johnson-Laird (1983) argues, “all our knowledge of the world depends 
on our ability to construct models of it” (p. 402). 
 Johnson (1987) examines understanding from the perspective of embodied 
cognition and describes understanding as “an event in which one has a world, or, 
more properly, a series of ongoing related meaning events in which one’s world 
stands forth” (p. 175). He characterizes meaning as a matter of understanding, 
which is always about relatedness as a form of intentionality in that “[a]n event 
becomes meaningful by pointing beyond itself to prior event structures in 
experience or toward possible future structures” (p. 177). Johnson conceives image 
schemata as organizing mental structures for human experience and understanding. 
Image schemata, which are functionally similar to Johnson-Laird’s (1983) mental 
models, are dynamic in nature because they are conceived to be flexible structures 
of activities. In summary, according to Johnson (1987), understanding is “an 
evolving process or activity in which image schemata, as organizing structures, 
partially order and form our experience and are modified by their embodiment in 
concrete experiences” (p. 30). 
 Furthermore, Perkins (1986) approaches understanding from his theory of 
knowledge as design, calling our attention to the metaphorical meaning of the term 
understanding. To understand means to stand under or be an insider of a problem 
situation. Our knowledge of a situation is accordingly a matter of design that has a 
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purpose, a structure, model cases, and related arguments. Conceptual models, in 
particular, mediate human understanding, where mental models play a critical role, 
pervading, enabling or even disabling the cognitive processes. 
 The brief review above points to a set of common criteria for understanding as 
conceived in the fields of psychology, philosophy, and learning sciences: 

– Understanding of a situation relies on a mental model that preserves the relevant 
or salient structural relations of a perceived or intuited state of affairs. 

– A mental model is dynamic in nature and evolves with experience. 
– The human ability to use mental models involves a system of relations that 

manages complexity and simulates a situation, enabling us to experience 
meaning and make inferences (cf. Seel, 2003). 

 Mental models are internal structures that are formulated in one’s mind. But 
where do they come from? Johnson-Laird (1983) suggests that mental models are 
originally constructed through one’s perceptual experience of the world, depending 
“both on the way the world is and on the way we are” (p. 402). A mental model 
therefore plays the role of a mental world that connects human imagination and the 
outside world. Johnson’s (1987) image schemata are conceived as “recurring 
structures of, or in, our perceptual interactions, bodily experience, and cognitive 
operations” (p. 79). Perkins (1986) also recognizes the central role of mental 
models in framing our understanding, arguing that both mental and physical 
models are designs that are necessary components of human knowledge 
acquisition. Along the same line of thought, Norman (1983) regards mental models 
as naturally evolving models of a target system, which are not necessarily accurate 
but are functional in enabling people to make decisions or predications. As such, 
people’s mental models also include their beliefs about themselves as well as the 
target system. 
 It follows, accordingly, that our understanding of a mathematical topic is a 
matter of having a functional mental model for it. Such a mental model does not 
only represent internally the state of relations of the mathematical topic but also 
runs dynamically in support of problem solving, including making wrong 
inferences (Norman, 1983; Seel, Al-Diban, & Blumschein, 2000). As internal 
entities, mental models cannot be directly assessed or constructed in an 
instructional setting. To assess one’s mental models, it is necessary to have them 
externalized by means of cultural artifacts such as linguistic resources and 
mathematical notations. To support learners’ construction of mathematically viable 
mental models, instructional designers need to provide model-eliciting activities, 
including intellectually appropriate conceptual models. In either direction, this 
leads to the discussion of multiple representations and conceptual and procedural 
understanding in mathematics teaching and learning. 
 Mathematics is a system of ideas developed over centuries as an outcome of the 
individual and collective endeavor of human experience (Dossey, 1992). The 
abstract nature of a mathematical idea is much similar to that of a mental model, 
which is not surprising at all, since one’s mathematical ideas are mental models. 
Just as a mental model has two major components (i.e., a structure that preserves 
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the relevant relations and the corresponding processes that allow the model to run 
dynamically), a mathematical idea is conceived as an interplay between one’s 
conceptual and procedural knowledge (Hiebert & Carpenter, 1992; Silver, 1986). 
For historical reasons, mathematics has been taught with too much emphasis on its 
procedural aspects, resulting in a host of learning problems among students who 
can perform some procedures correctly, but are little aware of what they have done 
and why their result may be correct (National Council of Teachers of Mathematics 
[NCTM], 2000). Reform efforts since the 1980s have explicitly called for the 
pedagogical coordination of the two aspects of mathematical knowledge, especially 
in problem solving situations (Silver, 1986). To understand a mathematical idea 
therefore is to have a mental model that integrates both its conceptual and its 
procedural aspects. 
 In light of the complexity of mathematical ideas and the limitations and 
affordances of mathematical representations, mathematical understanding has 
accordingly been characterized as a person’s ability to navigate through a system 
of multiple representations such as verbal expressions, diagrams, numeric tables, 
graphics, and algebraic notations (Goldin, 2003; Hiebert & Carpenter, 1992) and to 
grasp the relationships among the various representations and their structural 
similarities and differences (Goldin & Shteingold, 2001). This emphasis on 
multiple representations in mathematics education is consistent with similar 
principles involving complex subject matter in the learning sciences (Milrad et al., 
2003; Minsky, 2006) since each representation carries its own limitations as well as 
affordances. From a practical perspective, if a learner can coordinate a variety of 
representations as a mathematically competent person does, there is solid evidence 
that he or she understands or, in other words, has a valid mental model for the 
underlying mathematical idea. Furthermore, each representation, such as a table or 
a graph, is characterized as the totality of a product and the related processes, 
which refers to “the act of capturing a mathematical concept or relationship in 
some form and to the form itself” (NCTM, 2000, p. 67), including both external 
and internal representations. Thus, each representation ought to be conceived as a 
mental model on the part of the learner, which is used to recursively transform his 
or her mental model for the mathematical concept. For example, to understand a 
linear relation, a learner should be encouraged to seek a comprehensive mental 
model that synthesizes the underlying structure behind its verbal descriptions, 
problem situations, numeric tables, graphs, algebraic expressions, and the various 
connections among them. A graph, as a constituent sub-model, represents the linear 
nature of the relationship. It also facilitates the corresponding procedures such as 
graphing, calculating its slope, finding inverses, and making predictions. When a 
learner’s mental model for the graph is enriched through experience, the 
comprehensive mental model is recursively enhanced. Understanding thus occurs 
as the learner constructs increasingly mature mental models of the mathematical 
idea. There is not a clear endpoint in most cases. 
 When multiple representations are utilized to illustrate various aspects of a 
mathematical idea, they contribute to the complexity of the learning environment and 
the cognitive load on the part of learners. Learners who seek deep understanding are 
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expected to grasp not only the dynamic nature of each representation but also the 
dynamic connections among the multiple representations. Attaining such a level of 
mathematical understanding, which exists in the mind of mathematically proficient 
learners, is a daunting endeavor in traditional educational settings since it typically 
spans a long period of time. The invention of dynamic and interactive technologies, 
however, has reshaped the representational infrastructure of mathematics, allowing for 
personally identifiable dynamic representations and, more importantly, automated 
linking of multiple representations (Hegedus & Moreno-Armella, 2009; Kaput, 1992; 
Moreno-Armella, Hegedus, & Kaput, 2008). The interactive nature of new 
technologies further support and constrain the co-actions between learners and the 
target system (Moreno-Armella & Hegedus, 2009), establishing a kind of partnership 
of cognition (Salomon, Perkins, & Globerson, 1991). The interplay between dynamic 
representations and mathematical ideas further enhances the social communication 
about mathematics, leading to discoveries of pedagogically powerful “synergies 
between representations and concepts” and “conceptually better-adapted versions of 
old ones” (diSessa, 2007, p. 250). 
 In summary, our understanding of a mathematical idea depends on a viable 
mental model that captures its structural relations and the corresponding processes. 
Given the complexity of mathematics, it is essential that learners interact with and 
construct its multiple representations. These multiple representations can be 
separately constructed and manipulated and also dynamically coordinated using 
emergent learning technologies, such as GeoGebra, in an environment that 
supports co-actions between the learner and mathematical representations. In 
theory, dynamic representations are well aligned with our conception of mental 
models as the foundation of mathematical understanding and are typical of the 
behavior of mathematically proficient learners (Nickerson, 1985). In practice, 
however, dynamic multiple representations pose serious challenges to instructional 
design. Given the complexity of mathematical ideas, mathematics instruction calls 
for a starting point that gradually guides learners’ development of increasingly 
powerful and complex mathematical understanding. Thus, teaching mathematics 
using dynamic technology is an instructional design problem. In the next section, 
we discuss instructional design principles that may support learners’ mathematical 
development when dynamic mathematics learning technologies are integrated as 
infrastructural representations (diSessa, 2007). 

MODEL-FACILITATED LEARNING FOR DYNAMIC MATHEMATICS 

Technology is becoming pervasively influential in mathematics education in that it 
is playing a “fundamental yet invisible role” (Kaput et al., 2007, p. 190) in much 
the same way that electricity, mobile phones, and emails are pervasive and 
influential and mostly taken for granted, especially when readily available and in 
good working order. Our teaching practices and beliefs about teaching and learning 
traditional mathematics are facing challenges from new technological tools such as 
WolframAlpha® (www.wolframalpha.com) and open-source environments like 
GeoGebra (www.geogebra.org). Indeed, virtually all traditional K-12 mathematical 



LINGGUO BU, J. MICHAEL SPECTOR, AND ERHAN SELCUK HACIOMEROGLU 

20 

problems can now be readily solved by WolframAlpha®, which accepts natural-
language input and also provides a host of related concepts and representations. 
Predictably, the technologies are getting more intuitive and powerful. Indeed, the 
very goal of mathematics education is challenged by these technologies. If our 
primary goal for school mathematics were to enable children to solve those 
problems, then there would not be much they need to know beyond software 
navigation skills. By contrast, if our goal is to empower children to understand 
mathematics in the sense of having a valid, culturally acceptable mental model for 
making decisions, judgments, and predictions, then there is very little such 
technical tools can offer to school children. Those tools are powerful and 
informative resources, but the rest belongs to careful instructional design and 
classroom implementation. 
 In recognition of the epistemic complexity of mathematics (Kaput et al., 2007) 
and the generative power of dynamic learning technologies, we contend that 
Model-Facilitated Learning (MFL) (Milrad et al., 2003) can be adopted as an 
overarching framework for reconceptualizing mathematics instruction that takes 
advantage of emergent dynamic technologies. We further seek domain-specific 
principles from the theory of Realistic Mathematics Education (RME) 
(Freudenthal, 1973; Streefland, 1991; Treffers, 1987) and the instrument-related 
perspectives from the theory of Instrumental Genesis (IG) (Guin et al., 2005). 

Model-Facilitated Learning 

Decades of research and development in instructional design have identified a few 
fundamental principles of learning and instruction. Noticeably, understanding is 
grounded in one’s experience; meaning is situated in a context; and learning occurs 
when changes are made in an integrated system of constituents (Spector, 2004). As 
a theoretically grounded framework, Model-Facilitated Learning (MFL) (Milrad  
et al., 2003) draws on such basic principles, well-established learning theories, and 
methods of system dynamics to manage complexity in technology-enhanced 
learning environments. MFL seeks to promote meaningful learning and deep 
understanding, or a systems view of a complex problem situation. The MFL 
framework consists of modeling tools, multiple representations, and system 
dynamics methods that allow learners to build models and/or experiment with 
existing models as part of their effort to understand the structure and the dynamics 
of a problem situation. MFL recommends that learning be situated in a sequence of 
activities of graduated complexity, progressing from concrete manipulations to 
abstract representations while learners are engaged in increasingly complex 
problem solving tasks. Through the use of multiple representational tools, MFL 
further maintains the transparency of the underlying models that drives the 
behavior of a system simulation. 
 As an emergent theoretical framework for instructional design, MFL represents 
a well-grounded response to the affordances of new technologies and the needs to 
engage learners in the exploration of complex problems. As advanced instructional 
technologies are integrated into the teaching and learning of mathematics, and 
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mathematics instruction is integrated with other disciplines of science, mathematics 
educators and instructional designers find themselves facing similar issues that 
MFL promises to address. In particular, the MFL component of policy 
development holds promise in fostering learner reflection and resolving the 
validation issue raised by Doerr and Pratt (2008), who found that in a virtual 
modeling activity, learners tended to validate their emergent understanding solely 
within the virtual domain without connecting it back to the starting problem 
scenario. 

Didactical Phenomenology and Realistic Mathematics Education 

Along with other researchers (e.g., Brown & Campione, 1996; Merrill, 2007) in 
learning and instruction, we contend that effective instructional design starts with a 
deep understanding of the content knowledge. In mathematics education, 
Freudenthal’s (1983) didactical phenomenology of mathematical structures serves 
as a theoretical lens through which we can analyze a mathematical concept, 
including its historical origin, its realistic connections, its extensions, and its 
learning-specific characteristics. Such analysis lays the foundation for model-based 
instructional design and further yields a learning trajectory that starts from “those 
phenomena that beg to be organized and from that starting point teach[es] the 
learner to manipulate these means of organizing” (Freudenthal, 1983, p. 32). 
 Along such a learning trajectory, various representations are necessary for the 
learners to describe and communicate their experiences of the phenomena. This is 
where the new technologies come into play and facilitate the realization of learning 
potentials. The new dynamic technologies provide not only traditional forms of 
representation but also dynamic links and transformations. The dynamic links and 
transformations are significant in that it captures the dynamic process of 
representation as well as the static product of representation. 
 Freudenthal’s didactical phenomenology lays the foundation for the theory of 
Realistic Mathematics Education (RME), which has at its core the principle that 
mathematics is a human activity, in which students make sense of realistic problem 
situations, re-inventing mathematical ideas under the guidance of competent 
instructors, and gradually creating increasingly abstract mathematical ideas. In 
such a process of mathematization, students are engaged in the use of a chain of 
models, which evolves from models of concrete learning tasks to models for 
abstract mathematical structures (Gravemeijer et al., 2000). 

Instrumental Genesis 

Tool use is an essential component of mathematical learning. As learners make use 
of tools, including both traditional and digital tools, to facilitate their mathematical 
activities, such tools and their uses also constitute their mental world. A technical 
tool, which organizes and facilitates an activity, may eventually be internalized as a 
psychological tool, or rather, an instrument that mediates a learner’s mental 
processes (Vygotsky, 1978). In other words, a technical tool may become a part of 
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a mental model that enables a learner to make inferences in a problem situation. 
Mariotti (2002) characterizes such an instrument as an internal construction of an 
external object, which is “the unity between an object … and the organization of 
possible actions, the utilization schemes that constitute a structured set of 
invariants, corresponding to classes of possible operations” (p. 703). A common 
example is the relationship between students’ use of the compass as a circle 
construction tool and their conception of a circle, which automatically has a center 
and a radius, but makes it difficult for students to grasp other properties of a circle 
such as those concerning the diameter being the longest chord or locating the 
missing center of a given circle. 
 Within the context of a mathematical activity, the interactions between a tool or 
artifact and the learner are captured in the notion of Instrumental Genesis (IG), in 
which the learner builds his or her own schemes of action for the tool in a process 
called instrumentalization and the tool also shapes the learner’s mental conception 
of the tool and the activity in a process called instrumentation (Guin & Trouche, 
1999; Hoyles, Noss, & Kent, 2004; Mariotti, 2002; Trouche, 2005). Instrumental 
genesis is a long-term process that evolves as a learner internalizes more 
mathematical and technical artifacts and thus becomes more mathematically 
proficient. In light of the close relationships among the artifacts, the learner, and 
the specific mathematical activity, it is reasonable to conceptualize instrumental 
genesis as a triadic theoretical framework that helps make sense of general human 
activities, including mathematics learning where new tools have become 
distinctively instrumental (Fey, 2006). In particular, when new dynamic tools are 
used, the learning outcome is frequently different than the instructor’s intentions 
(Hollebrands, Laborde, & Sträβer, 2008). For example, while the mid-point tool in 
GeoGebra was intended as an alternative way to find the mid-point of a line 
segment, we found, in a professional development project in the US Midwest, that 
some classroom teachers would choose to use it when they were asked to find the 
mid-point of a segment whose two endpoints were explicitly given as pairs of 
coordinates. 
 In summary, instrumental genesis is a kind of descriptive learning theory that 
has a solid grounding in the social theory of learning and provides a theoretical 
lens through which we can make sense of learners’ use of technological tools and 
the potential impact of tool use on their mental processes in the context of 
mathematical activities. It contributes significant ideas to our understanding of 
mathematics learning in a model-centered perspective, where tools and artifacts are 
integral components at all stages. 

Model-Facilitated Learning (MFL) for Dynamic Mathematics 

The notion of dynamic mathematics dates back to Kaput’s (1992) conception of 
representational plasticity when digital media are used to support various forms 
of representation and has been further developed by other researchers (Moreno-
Armella et al., 2008) from historical and epistemological perspectives as new 
dynamic technological tools become widely accessible. We tend to think of 
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dynamic mathematics as a systematic correlation between the didactical 
phenomenology of a mathematical idea and the corresponding technological 
representations and tools. A mathematical idea is dynamic in that it is connected 
to a variety of other ideas in realistic and mathematical contexts and is also 
executable in the sense of a mental model and that of a conceptual digital 
construction. This notion of dynamic mathematics is well aligned with our 
characterization of mathematical understanding. In a real sense, all mathematical 
ideas are dynamic in the mind of a mathematically competent person. That 
process, which takes a long period of time to develop, can be facilitated by new 
dynamic technologies in support of learners who are on the way to mathematical 
proficiency. Using Doerr and Pratt’s (2008) notation, dynamic mathematics 
could be conceptualized as a set of (task, tool) pairs, which serve as the modeling 
infrastructure. Over such a mathematical and technological infrastructure, we 
seek to apply the MFL principles, thus establishing a preliminary instructional 
design framework for integrating dynamic technologies into the teaching and 
learning of mathematics. Our overarching goal is to promote students’ deep 
understanding of mathematics by focusing on the mathematical processes that are 
involved in problem solving and tool use. 

 

Figure 1. A model-facilitated instructional design framework for dynamic mathematics. 

 As shown in Figure 1, a lesson design cycle starts with a didactical 
phenomenological analysis of a mathematical idea, which charts out its structural 
connections, including its historical, realistic, and formal relations. Next, the 
technological tools are aligned with the mathematical connections with respect to 
the global learning objectives. Then, the MFL principles are applied in order to 
manage the complexity and maintain the mathematical transparency of the 
mathematical and technological or (task, tool) system. Models of multiple 
representations and structures play a major role in allowing students to explore and 
mathematize a starting scenario, develop increasingly abstract understanding, and 
further make informative decisions about the problem situation. We note that 
through the stage of policy development or reflection, learners will have an 
opportunity to examine their modeling activity as a whole, validate or modify their 
emerging insight into the problem situation. Furthermore, in a modeling 
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environment, the learner development cycle may assume a cyclic form, achieving 
higher levels of systemic understanding with each cycle. Noticeably, technical 
tools play an integral role in the modeling process. What initially is a digital 
representation, a computational utility, or a simulation tool may become integrated 
into learners’ mental world of mathematics as a psychological instrument. 
Therefore, we should pay special attention to the changing roles of tools in the 
learning cycle as a way to understand the challenges and opportunities of learners’ 
experience with dynamic mathematics. 
 Specifically, in app0lying MFL principles to dynamic mathematics, we 
recommend the following guidelines: 

– Conduct a phenomenological analysis of the mathematical idea concerned and 
identify some historical, realistic, or contemporary problem scenarios to situate 
the learning process. 

– Select a realistic scenario and conduct a thought experiment about the possible 
stages of learner development and the corresponding scaffolding strategies in 
what may be called a hypothetical learning trajectory. 

– Present problems of increasing complexity and maintain a holistic view of the 
opening scenario. 

– Guide learners in making sense of the problem scenario in mathematical ways 
such as model building and model use, maintaining awareness of technical tools 
and their intended functions. 

– Challenge learners to examine their modeling process, reflect on the meanings 
of their tool-enhanced actions, and further develop insight into their actions 
through decision-making and model-based inquiries. 

– Involve learners in group discussions about their learning processes and develop 
arguments for or against different ways of mathematical thinking and dynamic 
constructions. 

In summary, dynamic mathematics learning technologies, such as GeoGebra, 
provide an innovative platform to experiment with the basic tenets of Realistic 
Mathematics Education, in particular, its focus on using realistic contexts as 
sources of mathematical concepts and guided reinvention as a primary method of 
mathematization. Guided reinvention involves modeling as a fundamental 
process of mathematics learning (Gravemeijer & van Galen, 2003). When the 
complexity of mathematics learning is recognized and further appreciated in the 
context of emergent digital technological tools, MFL stands as a well-conceived 
theory-based instructional design framework that addresses the learning of 
complex subject matter using system dynamics methods and interactive 
technologies. The theory of instrumental genesis further sheds light on the 
mutually constitutive relationship between technical tools and learner 
development. By incorporating the major theoretical principles, we seek to 
develop a comprehensive design framework to conceptualize the integration of 
GeoGebra and similar technologies in mathematics teaching and learning. In the 
next section, we look at three examples that involve the implementation of some 
of the principles discussed above. 
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DESIGN EXAMPLES 

Quadratic Relations 

In this section, we present a model-based learning sequence for the teaching of 
quadratic relations to algebra students. Quadratic relations exist in various forms 
in mathematics and are frequently summarized in its algebraic form f(x) = 
ax2 + bx + c, where a, b, and c are some constants. If a = 0, it is reduced to a linear 
relation. Such a rule, familiar as it is to most algebra students, barely touches on 
the rich connections and mathematical significance of a quadratic relation. 
Certainly, we could make use of GeoGebra sliders and animate the effects of a, b, c 
on the shape and location of the parabola (Figure 2). However, this approach does 
not add much meaning to the mathematical relation. 

 

Figure 2. Exploring the effects of a, b, and c on the graph of a quadratic relation. 

 A preliminary phenomenological analysis of quadratic relations reveals a variety of 
contexts that may be employed as the foundation for concept formation. First, a 
quadratic relation can be found in conic sections or similar geometric activities such as 
paper-folding. Second, it can be found in a context that involves the area of a rectangle 
with certain width and length. A realistic problem could be stated as: If the width of a 
rectangle is given as x inches, and the length is two inches longer than the width, how is 
its area related to the width? Third, a quadratic relation can be found in the real-world 
construction of a dish antenna, which may use the directrix and focus description of a 
parabola. Fourth, the quadratic relation can be found in a water fountain or a similar 
situation involving a projectile. A focal question could be “why does the water stream 
behave the way it does once it leaves the spout?” Fifth, a quadratic relation exists in the 
phenomenon of free fall in physics. Other analysis may eventually reveal the fact that a 



LINGGUO BU, J. MICHAEL SPECTOR, AND ERHAN SELCUK HACIOMEROGLU 

26 

quadratic relation can be developed out of natural or artificial phenomena that involve 
two dimensions such as width and length for area or time and speed for distance. 
 Such a phenomenological analysis reveals the complexity of the mathematical idea 
and justifies the necessity of using multiple models in mathematics instruction. In our 
work with prospective mathematics teachers, we found the free fall phenomenon 
interesting since it is naturally familiar to and yet mathematically challenging for most 
of them. It further provides a context to ground discussion and investigation of multiple 
related mathematical topics, including constant functions, linear functions, and 
quadratic functions. Also, the situation could be simplified pedagogically to manage 
complexity while maintaining the integrity of the whole task. For example, if students 
find speed change difficult, a sub-problem could be posed for them to model distance 
changes in the case of an object moving at a fixed speed with no acceleration. 
 Thus, we can use the free fall phenomenon as a starting point for our discussion 
of quadratic functions by posing the following problem. The goal is to solve the 
problem by modeling the scenario and/or derive a formula to solve the problem. 

The Sears/Willis Tower in Chicago is about 442 meters from its roof to the 
ground. Mark takes a baseball to the roof, and somehow gets it out of  
the window with no force imposed on it. Now the ball falls freely toward the 
ground. Assuming that the air has no significant influence on the baseball and 
the gravitational acceleration in Chicago is approximately 10 m/s2, Mark 
wonders, without using calculus: (1) How fast is the ball falling? (2) How 
does the distance from the roof to the ball change over time? 

 According to our experience with preservice mathematics teachers, few students had 
a clear idea of what was going on, although nobody had trouble imagining such a 
situation. The primary challenge we encountered as instructors was an immediate call 
for a formula. For various reasons, most students tended to expect a formula to solve a 
given problem. While a formula does exist in this scenario, it is the least important part 
of the learning process, at least, under our circumstances. Instead, we could create  
a dynamic GeoGebra model to make sense of the scenario. The process is rarely 
sequential, but we need to follow a step-by-step approach in our presentation below. 
 First, we recognize the fact that there are only three initial parameters involved: 
the Earth’s gravitational acceleration estimated at 10 m/s2, the height of the tower, 
and the flow of time. Since we may want to play with these parameters, we choose 
to use names (or GeoGebra sliders) to represent them. This step is not required, but 
it leaves room for us to explore the dynamics of the problem. The initial values and 
the intervals of these sliders can be adjusted according to the real situation. 
 Second, we want to see how the speed of the baseball changes over time. Some 
students may choose to graph the function speed(x) = 10x, using the x-axis for time. 
That is a reasonable method if they understand the meaning of the function. However, 
we choose to graph the speed over time point by point, using the fact that at a given 
time designated by the slider Time, the speed of the ball is Gravity × Time. Therefore, 
we can plot the point using a command line input: Speed = (Time, Gravity * Time). 
This allows students to simulate the situation. When slider Time is dragged, the point 
Speed changes accordingly, indicating the change of speed over time. By turning on  
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the Trace feature for the point Speed, they could see how the speed changes over time 
(Figure 3). Of course, a point such as (Gravity, Time) could also be plotted to visualize 
the (lack of) change in Gravity over time. In the light of the multiple relations in the 
problem scenario, students should be encouraged, at all stages, to explore their own 
methods or externalize their conceptions, followed by small-group or whole-class 
justifications and reflections. For instance, the point-wise graph (Figure 3) can be 
shown to coincide with the continuous graph of speed(x) = 10x, which can be taken 
advantage of to introduce the meaning of an algebraic function f(x) = mx. 

 

Figure 3. A point-wise plot of the speed-time relation. 

 

Figure 4. The relationship between distance traveled and area of a triangle. 
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 Third, to find the distance the ball has traveled at a certain time, some cognitive 
support is necessary, including the use of simpler problems and prompts. For 
example, the instructor could pose a question about the area of the triangle formed 
by the points (0, 0), Speed, and the corresponding point on the x-axis (x(Speed), 0). 
If necessary, a simpler problem about constant speed and distance could be posed 
for students to relate distance to area in a geometric way. This critical step 
represents a cognitive leap and calls for the use of analogical reasoning and, more 
importantly, social interactions among the students and the instructor, where 
technology plays a very limited role. Eventually students will come to relate the 
distance traveled at a certain time to the area of the triangle as shown in Figure 4, 
and the area tool of GeoGebra thus becomes an instrument for students to find the 
distance. 
 Fourth, when students relate the distance traveled to the area of a 
corresponding triangle, it would be appropriate to ask the question: How is the 
distance traveled related to time? For that purpose, we can plot a point using 
the command line input: Distance = (Time, poly1), where poly1 is the name of 
the triangle and represents its area. Using the triangle as a whole without 
calculating its area is one of the features of GeoGebra that supports graduated 
complexity. At a higher level, it may be very appropriate for students to find an 
explicit way to calculate the area of the triangle. However, at the current step, 
the focus is to explore the relationship between distance and time. Using the 
Trace feature for the point Distance, students can simulate the free fall process 
and observe the change of distance over time in addition to the previous speed-
time relationship (Figure 5). 
 Fifth, to find when the ball will hit the ground, we could draw a horizontal line 
y = TowerHeight and simulate the free fall until the Distance point goes beyond 
that line as shown also in Figure 5. 
 Sixth, since the initial conditions Gravity and TowerHeight are defined using 
sliders, students can now change the initial conditions, observe their influences, 
and ask open-ended questions about the problem scenario. For example, what 
would happen in a place where gravity is 2.5 m/s2? What if the gravity is zero? By 
exploring such questions, students can potentially form a perspective on the 
problem scenario and identify the structure of the problem (i.e., the constant, linear, 
and quadratic relations). 
 Finally, the above GeoGebra sequence could be extended to support higher 
levels of algebraic thinking. While point-wise graphs represent a snapshot of the 
underlying structure of the problem scenario, they lack efficiency. As mentioned 
earlier, some students may find it tempting to graph the speed-time relationship 
using a function like speed(x) = Gravity * x. Along the same line of thinking, they 
could be guided to find an explicit relation between the distance and the time. In 
other words, at time x, what is the area of the corresponding triangle? Using the 
base-height rule, at time x, the area of the triangle is (1/2) x * speed(x), where x is 
the base and speed(x) is the height. Since speed(x) = Gravity * x, the distance 
traveled is (1/2) Gravity * x2. Therefore, we could enter distance(x) = (1/2) * 
Gravity * x^2 at the command line (Figure 6). Other dynamic explorations are 
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subsequently possible for students to develop a comprehensive mental model of a 
quadratic relation and its mathematical connections. 

 

Figure 5. Comparing the relationship between distance and time with the relationship 
between speed and time. 

 

Figure 6. The graph of a quadratic function fits the point-wise simulation of free fall. 

 To summarize, in the free fall construction we applied the basic principles of 
RME and MFL in our effort to make sense of not only the problem scenario but, 
more importantly, the mathematical ideas behind a quadratic relation. The resulting 
dynamic GeoGebra model serves three main purposes. First, it is the end-product 
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of a problem solving process and can be evaluated to assess a student’s 
understanding of the topic. Second, others can use it as a conceptual model to learn 
about the problem situation at a different level or as an initial step toward learning 
by modeling. Third, the GeoGebra model can be used as new starting points for 
higher-order explorations since it can be modified, extended, or incorporated into 
other instructional units of various mathematical focuses. 

Pi 

As another design example, we look at the most familiar concept of mathematics, 
Pi, which is defined as the ratio between the circumference of a circle and its 
diameter. In our experience, few students have trouble recalling the estimated value 
of Pi, but quite a few students cannot describe what it is beyond giving the number 
3.14. There is a long history behind the mathematical idea of Pi and many methods 
for estimating its value (Beckmann, 1976). However, most seem to require 
advanced mathematical knowledge such as power series or the concept of limit. 
Our goal is to get students to explore the mathematical idea of Pi and build a valid 
mental model that provides meaning in their future work involving Pi. 
 In light of the ubiquity of circles in the real world and the technological tools 
provided in GeoGebra, we decided to have students collect data about circles. 
Specifically, they were asked to find a variety of circles at home, measure them in 
inches, and record their data in the form of (diameter, circumference) pairs. Except 
for some measurement errors caused by the ruler, this is a trivial task. It serves as a 
starting point for further mathematization of the properties of a circle. As a 
subsequent activity, students were asked to plot these ordered pairs in the 
GeoGebra environment. Although a single pair of (diameter, circumference) by 
itself is insignificant, 17 pairs do tend to form a pattern when plotted as shown in 
Figure 7. This is the first step of Pi modeling, where a visual pattern points to the 
relationship between the circumference and the diameter of a circle. 
 The next step involves some form of regression analysis, which is beyond the 
scope of middle-grades mathematics. However, if regression analysis is not the 
primary objective of instruction, we could take advantage of the technological tools 
to manage the complexity of the task. Within GeoGebra, we could use the tool Best 
Fit Line, which takes a group of points and generates a line of best fit. With our 
data, the line of best fit is y = 3.13x + 0.19. This best-fit line represents a new type 
of mathematical model which leads to further discussion about the meaning of the 
slope ( 3.13) and the interpretation of y-intercept (0.19), including the influence of 
individual points. 
 A variety of what-if and what-if-not questions (Brown & Walter, 2005) could be 
further asked using the dynamic GeoGebra construction. For example, what if 
someone had made a measurement mistake? What if I drag a point away from the 
majority of the points? What if we had measured 100 circles of different sizes? 
 Discussion of these questions and the meaning of slope will eventually help 
students come to understand Pi as a ratio between the circumference and the 
diameter of a circle and construct a meaningful mental model of a circle, where Pi 
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indicates how the circumference changes with the diameter of a circle. Such a 
dynamic mental model is much more powerful for students to make inferences and 
predictions about relations involving circles than the narrow conception of Pi as a 
number that is about 3.14 and will in the long run help students appreciate the ideas 
behind Pi and similar linear relations as they move forward to higher levels of 
mathematics. 

 

Figure 7. The relationship between the circumference and the diameter of a circle (Point-
wise plot and best-fit line). 

Similarity 

As a third example, we look at the concept of similarity, which is closely related to 
proportional thinking in the learning processes. Most students have an informal 
understanding of similarity and can describe it in everyday terms. However, in 
exploring the concept of similarity in a realistic context, they tend to have 
difficulty coordinating the multiple quantities involved in a ratio or a proportion. In 
our work involving GeoGebra, we used the two poles problem as presented below. 

There are two poles erected on the ground (as shown Figure 8). One is six 
feet tall, and the other is three feet tall. Two ropes are tied from the top of one 
pole to the bottom of the other, intersecting at point P. What is the height of 
point P? 

 The problem situation should be imaginable to all students. In fact, they could 
conduct a hands-on or physical experiment and measure the height of Point P with 
respect to the ground. A question that naturally arises with the students is “How far 
apart are the two poles?” The distance between the two poles is not given in the 
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original problem and this hinders students’ attempts to solve the problem. When 
they are asked to experiment with different distances, however, they would begin 
to have a tentative finding: Perhaps, it does not matter at all! 

 

Figure 8. The two-pole problem: What is the height of point P? 

 While a physical simulation reveals some details of the problem, it has 
physical limitations: Students can not easily manipulate the problem or extend 
the problem space. With the physical model as a starting point, students can then 
move ahead to a GeoGebra simulation, which calls for further mathematization 
of the problem. In our experience with prospective and in-service teachers, we 
have repeatedly found that this step is a frustrating and yet motivating stage. 
When asked to build a GeoGebra model to represent the problem scenario, the 
vast majority would make a visual model of the original picture using lines and 
segments without attending to the mathematical aspects and assumptions of the 
problem. The visual model looks like a GeoGebra-based model of the problem; 
but when dragged, it collapses to their disappointment. This is a good mistake 
since it reveals the limitations of a visual model and helps students attend to the 
mathematical aspects of the problem. This shows the diagnostic power of a 
GeoGebra-based dynamic construction. A brief conversation with the class 
would quickly lead to the observation that the two poles should be perpendicular 
to the ground and, indeed, the ground does not have to be horizontal in a 
mathematical model. 
 Once students have completed this first step of mathematization from the 
context to a mathematically valid model, they could move on to the next level and 
use the GeoGebra model to address the original question about the height of point 
P, which is two feet. Subsequent exploration will unveil the fact that the distance 
between the two poles is irrelevant. No matter how far apart they are, point P is 
always two feet above the ground, even if the ground is slanted. When the Trace 
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feature is turned on for point P, we could move the two poles back and forth to 
collect more evidence in support of the observation, as shown in Figure 9. 

 

Figure 9. The height of point P stays constant regardless of the distance between B and D. 

 

Figure 10. The height of point P is not the ratio between the two poles. 

 In a dynamic GeoGebra model, the discussion does not end with finding the 
height of point P, which in fact is not the overarching goal of the activity. Students 
should be prompted for the next level of exploration—how is the height of point P 
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related to those of the two poles? Many students might come to a quick hypothesis 
that the height of point P is the length of the longer pole divided by that of the 
short one, which is indeed true numerically in this specific case. When such a 
hypothesis is discussed by the whole class, some students would suggest 
experimenting with the dynamic model, since they could change the initial 
conditions and generate numerous cases, which would lead to the rejection of their 
previous hypothesis. Although exploration through GeoGebra-based dynamic 
modeling does not yield an immediate rule for the relationship between the height 
of point P and the lengths of the two poles, it is a very meaningful and authentic 
learning process, which may serve as the foundation of a valid mental model for 
proportional reasoning in that it goes beyond a formula such as a/b = c/d and 
reveals the structure of the problem scenario. 
 When students interact with the dynamic GeoGebra model, making and/or 
rejecting their hypotheses, they may potentially see the invariant relational 
structure among the numerous cases. There are always two pairs of similar 
triangles involved, and the two triangles share a common side. Eventually, they 
may be scaffolded to articulate ratios with the two triangles and derive a rule for 
the height of point P, which is in the form of (AB×CD)/(AB+CD) and is applicable 
to all cases. While the rule itself is interesting, it is the holistic experience that will 
help students appreciate the mathematical ways of reasoning and the rationale 
behind the rules in mathematics. Along the learning trajectory, GeoGebra plays a 
variety of cognitive roles. First, it helps students understand the problem and 
identify gaps in their mathematical knowledge. Second, it helps solve the original 
problem and open doors for further exploration. Third, it helps students reason with 
the model, formulating and/or rejecting their hypotheses. Fourth, it serves as  
a conceptual model for proportional reasoning, which may eventually be 
incorporated into a student’s mental models for future encounters with similar 
problems. Finally, it shows how tools support and limit our perception of 
mathematical processes. To summarize, it is the whole experience from physical 
modeling and GeoGebra modeling, to advanced mathematical reasoning that 
provides students with a perspective on the complexity of the problem, the human 
nature of mathematical reasoning, and a paradigmatic case for mathematical 
problem solving. Indeed, the formula or the recall of such a formula does not 
illuminate the richness of the relations underlying the problem scenario and its 
pedagogical values. 
 In this section, we provided three design examples to showcase the relevance of 
the theoretical framework discussed previously in our re-conceptualization of 
school mathematics for the purpose of learning with understanding. There are a 
variety of mathematical topics that lend themselves to this type of experimentation 
which strives to provide certain valid mental models for students to make sense of 
and develop a holistic perspective on the end-products of mathematical 
investigations—rules and formulas. The scenarios presented above could well be 
replaced with similar ones, depending on the instructional context, the prior 
knowledge of the students, and the specific learning objectives. The fundamental 
principle is that students should be engaged in conceptual modeling in order to 
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develop valid and generative mental models in support of their mathematical 
learning. They either learn with ready-made models or learn by building or 
modifying models, using the technological tools available in the learning 
environment. 

CONCLUSIONS 

Mathematics is a human activity (Freudenthal, 1973). Mathematics learning and 
instruction are endowed with all the complexities of such a human endeavor, 
which range from the multi-dimensionality of the subject matter, the diverse 
backgrounds of students, to the evolving learning environments, including 
technological tools and educational goals. Virtually all mathematical ideas, even 
the very basic ideas in school mathematics, assume their significance with 
respect to an underlying conceptual system (Lesh, 2006). In this chapter, we first 
recognized the complexity of mathematics learning and the corresponding call 
for meaning and understanding in the ongoing mathematics education reforms. 
While it is relatively easy to identify a lack of understanding such as in the case 
of rule-based recall of facts, it is challenging to define what understanding is in 
the context of mathematics learning. A brief literature review further revealed the 
complexities of understanding in various contexts from learning theories to 
philosophy. In light of the research and theoretical developments in the past three 
decades in mathematics education, it seems reasonable to characterize 
mathematical understanding as a matter of having a world of dynamic mental 
models that are consistent with the conceptual systems of mathematics and can 
be called upon in specific situations in support of decision-making and 
predictions. The complexity of a mathematical idea, especially its connections to 
an underlying system, further requires the use of multiple representations and 
their dynamic interconnections. Given the internal nature of mental models, 
conceptual modeling becomes a necessary mediator to foster changes and 
developments in a learner’s mental world. In exploratory modeling, learners 
interact with ready-made systems as a way to learn about the underlying structure 
of the system; in expressive modeling, learners construct or modify models as a 
way to externalize, reflect on, and modify their mental models (Doerr & Pratt, 
2008). At a higher level, as learners solve problems in a model-centered 
environment, they further construct a mental model of themselves as problem 
solvers, which includes their beliefs, attitudes, and identity in relation to 
mathematics learning (Goldin, 2007; Norman, 1983). 
 The dynamic nature of mathematical understanding and the corresponding needs 
for multiple representations serve as a theoretical foundation for the integration of 
technological tools such as GeoGebra, which provides the utilities for learners to 
construct mathematical models. In a traditional setting, an expert’s dynamic 
understanding of a mathematical idea is usually hidden from the observers. To 
some extent, GeoGebra models help experts better externalize their mental models 
of mathematics for the purpose of personal reflection, and more importantly, as 
conceptual systems to facilitate novices’ learning. 
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 From a design perspective, we synthesized the basic principles of Realistic 
Mathematics Education (RME) and Model-Facilitated Learning (MFL), which, 
though developed in different fields, share a common theoretical orientation—
facilitating the learning of complex subject matter in a meaningful manner using 
models and modeling as a pedagogical tool to manage complexity and promote 
increasingly higher levels of understanding. While RME is deeply rooted in the 
search for meaning in the past three decades of mathematics education research 
and development, MFL has a solid foundation in learning and instructional design 
theories, with a strong commitment to the integration of new interactive 
technologies. We further considered the theory of Instrumental Genesis (IG) as a 
theoretical lens to examine the use of tools in mathematics learning. As learners 
make use of new technological resources such as GeoGebra in mathematical 
problem solving, their mathematical conceptions or mental models may become 
increasingly instrumented entities. In our work with prospective and in-service 
teachers, we have collected data in support of this theoretical construct. For 
example, when asked to find the area of a triangle whose vertices are given in 
terms of coordinates, many teachers tended to plot the three points, define a 
polygon, and then read its area from the GeoGebra environment, even if the three 
vertices were special cases and the area required only simple computations. Once 
tools become part of their mental resources, they seem to pose challenges to the 
traditional conceptions of mathematics and especially assessments. In short, RME, 
MFL, and IG provide a unified theoretical framework for us to examine the design 
and learning processes in our GeoGebra-integrated mathematics courses and 
professional development projects. As we gather more empirical data from the 
teachers and their students on a variety of mathematical topics in a variety of 
settings, we may need to further refine our theoretical constructs and clarify the 
relevance and limitations of the basic principles. 
 As design examples, we presented our preliminary work on the quadratic 
relations, Pi, and similarity in GeoGebra-integrated mathematics courses and 
professional development, which demonstrate how typical ideas in school 
mathematics should and could be reconceptualized, recontextualized, and 
problematized for the purposes of meaningful learning. One common characteristic 
of the three examples is our effort to engage students in whole-task explorations 
while providing just-in-time support with regard to component skills (van 
Merriënboer, Clark, & de Crook, 2002; van Merriënboer & Kirschner, 2007). Basic 
skills, such as plotting points and constructing perpendicular lines, are meaningful 
mostly because of their connections to the whole task and they are scaffolded on 
demand as part of the whole task.  
 While GeoGebra trivializes a host of traditional mathematical tasks such as 
graphing functions, solving equations, and finding geometric reflections, it does 
open the door for much more interesting and motivating scenarios of mathematical 
explorations and provides a platform for designing and implementing inquiry-
based learning (Barron & Darling-Hammond, 2008). Technology changes what 
mathematics can be investigated with students and how traditional mathematical 
ideas should be taught (NCTM, 2000). As new technologies enter the lives of 
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students at school and beyond, traditional problem solving could be further 
considered from a modeling and models perspective, incorporating the evolving 
needs of students and expectations of society (Lesh & Doerr, 2003). Furthermore, 
in light of the versatile nature of GeoGebra and its ongoing development, 
GeoGebra lends itself to a variety of theoretical frameworks for mathematics 
education. Just as we recognize the dynamic nature of mathematical understanding 
and the use of GeoGebra, we seek to embrace a dynamic and diverse understanding 
of instructional and learning theories (Jonassen, 2005) as the world community 
joins hands in charting out the challenges and opportunities of quality mathematics 
education for all. 
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